A Reduced Basis for Option Pricing

被引:22
|
作者
Cont, Rama [1 ,2 ]
Lantos, Nicolas [3 ,4 ]
Pironneau, Olivier [3 ]
机构
[1] Univ Paris 06, CNRS, UMR 7599, Lab Probabilites & Modeles Aleatoires, Paris, France
[2] Columbia Univ, IEOR Dept, New York, NY 10027 USA
[3] Univ Paris 06, CNRS, UMR 7598, Lab Jacques Louis Lions, F-75252 Paris, France
[4] Natixis Corp Solut, F-75008 Paris, France
来源
关键词
option pricing; PDE; PIDE; integro-differential equation; jump-diffusion; Merton model; Galerkin method; reduced basis;
D O I
10.1137/10079851X
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We introduce a reduced basis method for the efficient numerical solution of partial integro-differential equations (PIDEs) which arise in option pricing theory. Our method constructs the solution as a linear combination of basis functions constructed from a sequence of Black-Scholes solutions with different volatilities. We show that this a priori choice of basis leads to a sparse representation of option pricing functions, yielding an approximation error which decays exponentially in the number of basis functions. A Galerkin method using this basis for solving the pricing PDE is shown to have better numerical performance relative to commonly used finite-difference and finite-element methods for the CEV diffusion model and the Merton jump diffusion model. We also compare our method with a numerical proper orthogonal decomposition (POD). Finally, we show that this approach may be used advantageously for the calibration of local volatility functions.
引用
收藏
页码:287 / 316
页数:30
相关论文
共 50 条
  • [1] A reduced basis method for parabolic partial differential equations with parameter functions and application to option pricing
    Mayerhofer, Antonia
    Urban, Karsten
    JOURNAL OF COMPUTATIONAL FINANCE, 2017, 20 (04) : 71 - 106
  • [2] Reduced interest option pricing for green bonds
    Zheng, Chengli
    Jin, Jiayu
    Han, Liyan
    CHINA FINANCE REVIEW INTERNATIONAL, 2024, 14 (02) : 228 - 268
  • [3] Reduced Form Mortgage Pricing as an Alternative to Option-Pricing Models
    James B. Kau
    Donald C. Keenan
    Alexey A. Smurov
    The Journal of Real Estate Finance and Economics, 2006, 33 : 183 - 196
  • [4] Reduced form mortgage pricing as an alternative to option-pricing models
    Kau, James B.
    Keenan, Donald C.
    Smurov, Alexey A.
    JOURNAL OF REAL ESTATE FINANCE AND ECONOMICS, 2006, 33 (03): : 183 - 196
  • [5] Pricing European Passport Option with Radial Basis Function
    Kanaujiya A.
    Chakrabarty S.P.
    International Journal of Applied and Computational Mathematics, 2017, 3 (3) : 1589 - 1604
  • [6] Option pricing: the reduced-form SDE model
    Rukanda, G. S.
    Govinder, K. S.
    O'Hara, J. G.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2022, 28 (04) : 590 - 604
  • [7] Chebyshev reduced basis function applied to option valuation
    de Frutos J.
    Gatón V.
    Computational Management Science, 2017, 14 (4) : 465 - 491
  • [8] A New Stable Local Radial Basis Function Approach for Option Pricing
    Golbabai, A.
    Mohebianfar, E.
    COMPUTATIONAL ECONOMICS, 2017, 49 (02) : 271 - 288
  • [9] A New Stable Local Radial Basis Function Approach for Option Pricing
    A. Golbabai
    E. Mohebianfar
    Computational Economics, 2017, 49 : 271 - 288
  • [10] Radial Basis Function generated Finite Differences for option pricing problems
    Milovanovic, Slobodan
    von Sydow, Lina
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) : 1462 - 1481