DATA-DRIVEN RADIAL COMPRESSOR DESIGN SPACE MAPPING

被引:0
|
作者
Brind, James [1 ]
机构
[1] Univ Cambridge, Whittle Lab, Cambridge, England
关键词
radial compressor; preliminary design; turbomachinery; aerodynamics;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Estimates of turbomachinery performance trends inform system-level compromises during preliminary design. Existing empirical correlations for efficiency use limited experimental data, while analytical loss models require calibration to yield predictive results. From a set of 3708 radial compressor computations, this paper maps efficiency as a function of mean-line aerodynamics, and determines the governing loss mechanisms. An open-source turbomachinery design code creates annulus and blade geometry, then runs aReynolds-average Navier-Stokes simulation for compressors sampled from the mean-line design space. Polynomial surface fits yield a continuous eight-dimensional representation of the design space for analysis, predicting efficiency with a root-mean-square error of 1.2% points. The results show a balance between surface dissipation in boundary layers and mixing losses due to casing separations sets optimum values for inlet Mach number, hub-to-tip ratio, de Haller number, and backsweep angle. Surface dissipation drives the effect of flow coefficient, with high surface areas at low values, and high velocities at high values. Compact compressor designs are achieved by increasing inlet Mach number, reducing hub-to-tip ratio, and minimising the radial loading coefficient - all of which reduce efficiency approaching design space boundaries. An interactive web-based tool makes the results available to practising engineers, demonstrating large ensembles of automated designs and simulations as a higher-fidelity replacement for legacy empirical correlations in preliminary design.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Data-Driven Reversible Jump for QTL Mapping
    Zuanetti, Daiane Aparecida
    Milan, Luis Aparecido
    GENETICS, 2016, 202 (01) : 25 - +
  • [22] Data-Driven Product Design and Axiomatic Design
    Yang, Bin
    Xiao, Ren-bin
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2021, : 489 - 493
  • [23] Software ecosystem for the data-driven design of chemical systems and the exploration of chemical space
    Hachmann, Johannes
    Haghighatlari, Mojtaba
    Evangelista, William
    Afzal, Mohammad Atif Faiz
    Shih, Ching-Yen
    Moore, Bryan
    Pechagin, Mikhail
    Tian, Yujie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [24] Data-driven design of molecular nanomagnets
    Duan, Yan
    Rosaleny, Lorena E.
    Coutinho, Joana T.
    Gimenez-Santamarina, Silvia
    Scheie, Allen
    Baldovi, Jose J.
    Cardona-Serra, Salvador
    Gaita-Arino, Alejandro
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [25] Data-driven design of molecular nanomagnets
    Yan Duan
    Lorena E. Rosaleny
    Joana T. Coutinho
    Silvia Giménez-Santamarina
    Allen Scheie
    José J. Baldoví
    Salvador Cardona-Serra
    Alejandro Gaita-Ariño
    Nature Communications, 13
  • [26] Curriculum Design - A Data-Driven Approach
    Chang, Jung-Kuei
    Tsao, Nai-Lung
    Kuo, Chin-Hwa
    Hsu, Hui-Huang
    PROCEEDINGS 2016 5TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS IIAI-AAI 2016, 2016, : 492 - 496
  • [27] A Framework for Data-Driven Automata Design
    Zhang, Yuanrui
    Chen, Yixiang
    Ma, Yujing
    REQUIREMENTS ENGINEERING IN THE BIG DATA ERA, 2015, 558 : 33 - 47
  • [28] Data-driven design of soft sensors
    James T. Glazar
    Vivek B. Shenoy
    Nature Machine Intelligence, 2022, 4 : 194 - 195
  • [29] Data-driven computational protein design
    Frappier, Vincent
    Keating, Amy E.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2021, 69 : 63 - 69
  • [30] DATA-DRIVEN DESIGN & PREDICTIVE GAMIFICATION
    Stogr, Jakub
    DISCO 2015: FROM ANALOG EDUCATION TO DIGITAL EDUCATION, 2015, : 193 - 193