Data-driven design of molecular nanomagnets

被引:11
|
作者
Duan, Yan [1 ,2 ]
Rosaleny, Lorena E. [1 ]
Coutinho, Joana T. [1 ,3 ]
Gimenez-Santamarina, Silvia [1 ]
Scheie, Allen [4 ]
Baldovi, Jose J. [1 ]
Cardona-Serra, Salvador [1 ]
Gaita-Arino, Alejandro [1 ]
机构
[1] Univ Valencia, Inst Ciencia Mol ICMol, C Catedrat Jose Beltran 2, Paterna 46980, Spain
[2] South China Univ Technol, Spin X Inst, Guangzhou 510641, Peoples R China
[3] Polytech Leiria, Ctr Rapid & Sustainable Prod Dev, P-2430028 Marinha Grande, Portugal
[4] Oak Ridge Natl Lab, Neutron Scattering Div, POB 2009, Oak Ridge, TN 37831 USA
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
SINGLE-ION MAGNETS; ENERGY BARRIERS; ANISOTROPY BARRIER; RELAXATION; MAGNETIZATION; BLOCKING; DYNAMICS;
D O I
10.1038/s41467-022-35336-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three decades of research in molecular nanomagnets have raised their magnetic memories from liquid helium to liquid nitrogen temperature thanks to a wise choice of the magnetic ion and coordination environment. Still, serendipity and chemical intuition played a main role. In order to establish a powerful framework for statistically driven chemical design, here we collected chemical and physical data for lanthanide-based nanomagnets, catalogued over 1400 published experiments, developed an interactive dashboard (SIMDAVIS) to visualise the dataset, and applied inferential statistical analysis. Our analysis shows that the Arrhenius energy barrier correlates unexpectedly well with the magnetic memory. Furthermore, as both Orbach and Raman processes can be affected by vibronic coupling, chemical design of the coordination scheme may be used to reduce the relaxation rates. Indeed, only bis-phthalocyaninato sandwiches and metallocenes, with rigid ligands, consistently present magnetic memory up to high temperature. Analysing magnetostructural correlations, we offer promising strategies for improvement, in particular for the preparation of pentagonal bipyramids, where even softer complexes are protected against molecular vibrations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Data-driven design of molecular nanomagnets
    Yan Duan
    Lorena E. Rosaleny
    Joana T. Coutinho
    Silvia Giménez-Santamarina
    Allen Scheie
    José J. Baldoví
    Salvador Cardona-Serra
    Alejandro Gaita-Ariño
    [J]. Nature Communications, 13
  • [2] Data-Driven Design
    Schmidt, Aaron
    [J]. LIBRARY JOURNAL, 2016, 141 (06) : 26 - 26
  • [3] Molecular field analysis for data-driven molecular design in asymmetric catalysis
    Yamaguchi, Shigeru
    [J]. ORGANIC & BIOMOLECULAR CHEMISTRY, 2022, 20 (31) : 6057 - 6071
  • [4] Data-driven Logotype Design
    Parente, Jessica
    Martins, Tiago
    Bicker, Joao
    [J]. 2018 22ND INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2018, : 64 - 70
  • [5] Data-driven contract design
    Burkett, Justin
    Rosenthal, Maxwell
    [J]. JOURNAL OF ECONOMIC THEORY, 2024, 221
  • [6] Data-Driven Gamification Design
    Meder, Michael
    Rapp, Amon
    Plumbaum, Till
    Hopfgartner, Frank
    [J]. PROCEEDINGS OF THE 21ST INTERNATIONAL ACADEMIC MINDTREK CONFERENCE (ACADEMIC MINDTREK), 2017, : 255 - 258
  • [7] Data-driven Contract Design
    Venkitasubramaniam, Parv
    Gupta, Vijay
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 2283 - 2288
  • [8] Data-Driven Algorithm Design
    Gupta, Rishi
    Roughgarden, Tim
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (06) : 87 - 94
  • [9] Data-Driven Product Design and Axiomatic Design
    Yang, Bin
    Xiao, Ren-bin
    [J]. PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2021, : 489 - 493
  • [10] A Framework for Data-Driven Automata Design
    Zhang, Yuanrui
    Chen, Yixiang
    Ma, Yujing
    [J]. REQUIREMENTS ENGINEERING IN THE BIG DATA ERA, 2015, 558 : 33 - 47