DATA-DRIVEN RADIAL COMPRESSOR DESIGN SPACE MAPPING

被引:0
|
作者
Brind, James [1 ]
机构
[1] Univ Cambridge, Whittle Lab, Cambridge, England
关键词
radial compressor; preliminary design; turbomachinery; aerodynamics;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Estimates of turbomachinery performance trends inform system-level compromises during preliminary design. Existing empirical correlations for efficiency use limited experimental data, while analytical loss models require calibration to yield predictive results. From a set of 3708 radial compressor computations, this paper maps efficiency as a function of mean-line aerodynamics, and determines the governing loss mechanisms. An open-source turbomachinery design code creates annulus and blade geometry, then runs aReynolds-average Navier-Stokes simulation for compressors sampled from the mean-line design space. Polynomial surface fits yield a continuous eight-dimensional representation of the design space for analysis, predicting efficiency with a root-mean-square error of 1.2% points. The results show a balance between surface dissipation in boundary layers and mixing losses due to casing separations sets optimum values for inlet Mach number, hub-to-tip ratio, de Haller number, and backsweep angle. Surface dissipation drives the effect of flow coefficient, with high surface areas at low values, and high velocities at high values. Compact compressor designs are achieved by increasing inlet Mach number, reducing hub-to-tip ratio, and minimising the radial loading coefficient - all of which reduce efficiency approaching design space boundaries. An interactive web-based tool makes the results available to practising engineers, demonstrating large ensembles of automated designs and simulations as a higher-fidelity replacement for legacy empirical correlations in preliminary design.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Failure diagnosis of a compressor subjected to surge events: A data-driven framework
    Leoni, Leonardo
    De Carlo, Filippo
    Abaei, Mohammad Mahdi
    Toroody, Ahmad Bahoo
    Tucci, Mario
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 233
  • [42] Laws and prediction of axial compressor performance map based on data-driven
    Liu T.
    Gao L.
    Feng X.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2021, 36 (05): : 1072 - 1082
  • [43] Data-Driven Voltage Regulation in Radial Power Distribution Systems
    Xu, Hanchen
    Dominguez-Garcia, Alejandro D.
    Veeravalli, Venugopal V.
    Sauer, Peter W.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (03) : 2133 - 2143
  • [44] Data-driven space planning: using Suma to collect data
    Eldermire, Erin R. B.
    JOURNAL OF THE MEDICAL LIBRARY ASSOCIATION, 2019, 107 (04) : 611 - 612
  • [45] Data-driven Space Science at ESAC Science Data Centre
    Martinez, Beatriz
    Barbarisi, Isa
    Gonzalez, Juan
    Fernandez, Monica
    Laantee, Caroline
    Merin, Bruno
    Nieto, Sara
    Perez, Hector
    Salgado, Jesus
    de Teodoro, Pilar
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVIII, 2019, 523 : 409 - 412
  • [46] A data-driven functional mapping of the anterior temporal lobes
    Persichetti, Andrew S.
    Denning, Joseph M.
    Gotts, Stephen J.
    Martin, Alex
    JOURNAL OF NEUROSCIENCE, 2021, 41 (28): : 6038 - 6049
  • [47] A data-driven framework for mapping domains of human neurobiology
    Elizabeth Beam
    Christopher Potts
    Russell A. Poldrack
    Amit Etkin
    Nature Neuroscience, 2021, 24 : 1733 - 1744
  • [48] A Spatial Data-Driven Approach for Mineral Prospectivity Mapping
    Senanayake, Indishe P.
    Kiem, Anthony S.
    Hancock, Gregory R.
    Metelka, Vaclav
    Folkes, Chris B.
    Blevin, Phillip L.
    Budd, Anthony R.
    REMOTE SENSING, 2023, 15 (16)
  • [49] Data-driven mapping of the potential mountain permafrost distribution
    Deluigi, Nicola
    Lambiel, Christophe
    Kanevski, Mikhail
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 590 : 370 - 380
  • [50] Mapping landslide susceptibility using data-driven methods
    Zezere, J. L.
    Pereira, S.
    Melo, R.
    Oliveira, S. C.
    Garcia, R. A. C.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 589 : 250 - 267