Scalable Low-Temperature CO2 Electrolysis: Current Status and Outlook

被引:3
|
作者
Lee, Hojeong [1 ]
Kwon, Seontaek [1 ]
Park, Namgyoo [1 ]
Cha, Sun Gwan [2 ]
Lee, Eunyoung [1 ]
Kong, Tae-Hoon [1 ]
Cha, Jihoo [1 ]
Kwon, Youngkook [1 ,2 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[2] UNIST, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
来源
JACS AU | 2024年 / 4卷 / 09期
基金
新加坡国家研究基金会;
关键词
CO2; electrolysis; Membrane electrodeassembly; Carbon capture; Product separation; Commercialization; GAS-DIFFUSION ELECTRODE; OF-THE-ART; CARBON-DIOXIDE; ELECTROCHEMICAL CO2; WATER OXIDATION; FORMIC-ACID; ELECTROCATALYTIC REDUCTION; POLYMER ELECTROLYTE; COPPER-CATALYSTS; EFFICIENT CO2;
D O I
10.1021/jacsau.4c00583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO2 reduction (eCO(2)R) in membrane electrode assemblies (MEAs) has brought e-chemical production one step closer to commercialization because of its advantages of minimized ohmic resistance and stackability. However, the current performance of reported eCO(2)R in MEAs is still far below the threshold for economic feasibility where low overall cell voltage (<2 V) and extensive stability (>5 years) are required. Furthermore, while the production cost of e-chemicals heavily relies on the carbon capture and product separation processes, these areas have received much less attention compared to CO2 electrolysis, itself. In this perspective, we examine the current status of eCO(2)R technologies from both academic and industrial points of view. We highlight the gap between current capabilities and commercialization standards and offer future research directions for eCO(2)R technologies with the hope of achieving industrially viable e-chemical production.
引用
收藏
页码:3383 / 3399
页数:17
相关论文
共 50 条
  • [1] Ionomer and Membrane Designs for Low-temperature CO2 and CO Electrolysis
    Deng, Huiying
    Chen, Zhuo
    Wang, Yuhang
    CHEMSUSCHEM, 2025, 18 (04)
  • [2] Carbon corrosion in low-temperature CO2 electrolysis systems
    Ferrell, Jack R.
    Rasmussen, Mathew
    McNeary, W. Wilson
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (15): : 3266 - 3278
  • [3] An industrial perspective on catalysts for low-temperature CO2 electrolysis
    Richard I. Masel
    Zengcai Liu
    Hongzhou Yang
    Jerry J. Kaczur
    Daniel Carrillo
    Shaoxuan Ren
    Danielle Salvatore
    Curtis P. Berlinguette
    Nature Nanotechnology, 2021, 16 : 118 - 128
  • [4] An industrial perspective on catalysts for low-temperature CO2 electrolysis
    Masel, Richard I.
    Liu, Zengcai
    Yang, Hongzhou
    Kaczur, Jerry J.
    Carrillo, Daniel
    Ren, Shaoxuan
    Salvatore, Danielle
    Berlinguette, Curtis P.
    NATURE NANOTECHNOLOGY, 2021, 16 (02) : 118 - 128
  • [5] A catalyst for low-temperature CO2 activation
    Zhang, Xin
    Chowdhury, Abhishek Dutta
    NATURE MATERIALS, 2023, 22 (06) : 669 - 670
  • [6] A catalyst for low-temperature CO2 activation
    Xin Zhang
    Abhishek Dutta Chowdhury
    Nature Materials, 2023, 22 : 669 - 670
  • [7] Learning from the past: Limitations of techno-economic assessments for low-temperature CO2 electrolysis
    Vos, Josephine
    Ramirez, Andrea
    Perez-Fortes, Mar
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 213
  • [8] CO2 PHOTOASSIMILATION BY THE SPINACH CHLOROPLAST AT LOW-TEMPERATURE
    FU, CF
    GIBBS, M
    PLANT PHYSIOLOGY, 1987, 83 (04) : 849 - 855
  • [9] Pathways for production of CO2 and CO in low-temperature oxidation of coal
    Wang, HH
    Dlugogorski, BZ
    Kennedy, EM
    ENERGY & FUELS, 2003, 17 (01) : 150 - 158
  • [10] Effect of Applied Voltage on the Current Density of CO2 Electrolysis in High Temperature
    Kashiwaya, Yoshiaki
    Shiomi, Yohei
    Nomura, Takahiro
    Hasegawa, Masakatsu
    ISIJ INTERNATIONAL, 2015, 55 (02) : 392 - 398