SingleCellGGM enables gene expression program identification from single-cell transcriptomes and facilitates universal cell label transfer

被引:0
|
作者
Xu, Yupu [1 ]
Wang, Yuzhou [1 ,2 ]
Ma, Shisong [1 ,3 ]
机构
[1] Univ Sci & Technol China, Sch Life Sci, Div Life Sci & Med, MOE Key Lab Cellular Dynam,Innovat Acad Seed Desig, Hefei, Peoples R China
[2] Univ Sci & Technol China, Affiliated Hosp USTC 1, Div Life Sci & Med, Hefei, Peoples R China
[3] Univ Sci & Technol China, Sch Data Sci, Hefei, Peoples R China
来源
CELL REPORTS METHODS | 2024年 / 4卷 / 07期
基金
中国国家自然科学基金;
关键词
DISCOVERY; NETWORK; MOUSE;
D O I
10.1016/j.crmeth.2024.100813
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Single-cell electroporation for gene transfer in vivo
    Haas, K
    Sin, WC
    Javaherian, A
    Li, Z
    Cline, HT
    NEURON, 2001, 29 (03) : 583 - 591
  • [32] Analysis of single-cell transcriptomes reveals gene expression states that drive key transitions in cellular subpopulations
    May, A. P.
    Shuga, J.
    Chen, P.
    Wang, X.
    Wang, J.
    Leyrat, A.
    Weaver, S.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [33] Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations
    Stahlberg, Anders
    Andersson, Daniel
    Aurelius, Johan
    Faiz, Maryam
    Pekna, Marcela
    Kubista, Mikael
    Pekny, Milos
    NUCLEIC ACIDS RESEARCH, 2011, 39 (04) : e24
  • [34] Single-cell gene expression in tissues, tumors, and cell lines
    Hashimoto, Shinichi
    CYTOKINE, 2017, 100 : 24 - 24
  • [35] Direct cell lysis for single-cell gene expression profiling
    Svec, David
    Andersson, Daniel
    Pekny, Milos
    Sjoback, Robert
    Kubista, Mikael
    Stahlberg, Anders
    FRONTIERS IN ONCOLOGY, 2013, 3
  • [36] Privacy of single-cell gene expression data
    Cho, Hyunghoon
    PATTERNS, 2024, 5 (11):
  • [37] Single-cell gene expression of the bovine blastocyst
    Negron-Perez, Veronica M.
    Zhang, Yanping
    Hansen, Peter J.
    REPRODUCTION, 2017, 154 (05) : 627 - 644
  • [38] Robust enhancer-gene regulation identified by single-cell transcriptomes and epigenomes
    Xie, Fangming
    Armand, Ethan J.
    Yao, Zizhen
    Liu, Hanqing
    Bartlett, Anna
    Behrens, M. Margarita
    Li, Yang Eric
    Lucero, Jacinta D.
    Luo, Chongyuan
    Nery, Joseph R.
    Pinto-Duarte, Antonio
    Poirion, Olivier B.
    Preissl, Sebastian
    Rivkin, Angeline C.
    Tasic, Bosiljka
    Zeng, Hongkui
    Ren, Bing
    Ecker, Joseph R.
    Mukamel, Eran A.
    CELL GENOMICS, 2023, 3 (07):
  • [39] Detection of gene cis-regulatory element perturbations in single-cell transcriptomes
    Yeo, Grace Hui Ting
    Juez, Oscar
    Chen, Qing
    Banerjee, Budhaditya
    Chu, Lendy
    Shen, Max W.
    Sabry, May
    Logister, Ive
    Sherwood, Richard I.
    Gifford, David K.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (03)
  • [40] DECODING THE TRANSCRIPTIONAL PROGRAM FOR BLOOD DEVELOPMENT FROM WHOLE TISSUE SINGLE-CELL GENE EXPRESSION MEASUREMENTS
    Moignard, Victoria
    Woodhouse, Steven
    Haghverdi, Laleh
    Lilly, Josh
    Tanaka, Yosuke
    Wilkinson, Adam
    Buettner, Florian
    Nishikawa, Shin-Ichi
    Piterman, Nir
    Kouskoff, Valerie
    Theis, Fabian
    Fisher, Jasmin
    Gottgens, Berthold
    EXPERIMENTAL HEMATOLOGY, 2014, 42 (08) : S52 - S52