SingleCellGGM enables gene expression program identification from single-cell transcriptomes and facilitates universal cell label transfer

被引:0
|
作者
Xu, Yupu [1 ]
Wang, Yuzhou [1 ,2 ]
Ma, Shisong [1 ,3 ]
机构
[1] Univ Sci & Technol China, Sch Life Sci, Div Life Sci & Med, MOE Key Lab Cellular Dynam,Innovat Acad Seed Desig, Hefei, Peoples R China
[2] Univ Sci & Technol China, Affiliated Hosp USTC 1, Div Life Sci & Med, Hefei, Peoples R China
[3] Univ Sci & Technol China, Sch Data Sci, Hefei, Peoples R China
来源
CELL REPORTS METHODS | 2024年 / 4卷 / 07期
基金
中国国家自然科学基金;
关键词
DISCOVERY; NETWORK; MOUSE;
D O I
10.1016/j.crmeth.2024.100813
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] BrewerIX enables allelic expression analysis of imprinted and X-linked genes from bulk and single-cell transcriptomes
    Martini, Paolo
    Sales, Gabriele
    Diamante, Linda
    Perrera, Valentina
    Colantuono, Chiara
    Riccardo, Sara
    Cacchiarelli, Davide
    Romualdi, Chiara
    Martello, Graziano
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [12] Integration and transfer learning of single-cell transcriptomes via cFIT
    Peng, Minshi
    Li, Yue
    Wamsley, Brie
    Wei, Yuting
    Roeder, Kathryn
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (10)
  • [13] Uncertainty Estimation for Single-cell Label Transfer
    Khatri, Robin
    Bonn, Stefan
    CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 179, 2022, 179
  • [14] Identification of spatial expression trends in single-cell gene expression data
    Daniel Edsgärd
    Per Johnsson
    Rickard Sandberg
    Nature Methods, 2018, 15 : 339 - 342
  • [15] Identification of spatial expression trends in single-cell gene expression data
    Edsgard, Daniel
    Johnsson, Per
    Sandberg, Rickard
    NATURE METHODS, 2018, 15 (05) : 339 - +
  • [16] A universal approach for integrating super large-scale single-cell transcriptomes by exploring gene rankings
    Shen, Hongru
    Shen, Xilin
    Feng, Mengyao
    Wu, Dan
    Zhang, Chao
    Yang, Yichen
    Yang, Meng
    Hu, Jiani
    Liu, Jilei
    Wang, Wei
    Li, Yang
    Zhang, Qiang
    Yang, Jilong
    Chen, Kexin
    Li, Xiangchun
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [17] T cell fate and clonality inference from single-cell transcriptomes
    Stubbington, Michael J. T.
    Lonnberg, Tapio
    Proserpio, Valentina
    Clare, Simon
    Speak, Anneliese
    Dougan, Gordon
    Teichmann, Sarah A.
    NATURE METHODS, 2016, 13 (04) : 329 - 332
  • [18] T cell fate and clonality inference from single-cell transcriptomes
    Stubbington M.J.T.
    Lönnberg T.
    Proserpio V.
    Clare S.
    Speak A.O.
    Dougan G.
    Teichmann S.A.
    Nature Methods, 2016, 13 (4) : 329 - 332
  • [19] Deciphering Developmental Processes from Single-Cell Transcriptomes
    Robson, Paul
    DEVELOPMENTAL CELL, 2014, 29 (03) : 260 - 261
  • [20] Quantification of cell identity from single-cell gene expression profiles
    Idan Efroni
    Pui-Leng Ip
    Tal Nawy
    Alison Mello
    Kenneth D Birnbaum
    Genome Biology, 16