SingleCellGGM enables gene expression program identification from single-cell transcriptomes and facilitates universal cell label transfer

被引:0
|
作者
Xu, Yupu [1 ]
Wang, Yuzhou [1 ,2 ]
Ma, Shisong [1 ,3 ]
机构
[1] Univ Sci & Technol China, Sch Life Sci, Div Life Sci & Med, MOE Key Lab Cellular Dynam,Innovat Acad Seed Desig, Hefei, Peoples R China
[2] Univ Sci & Technol China, Affiliated Hosp USTC 1, Div Life Sci & Med, Hefei, Peoples R China
[3] Univ Sci & Technol China, Sch Data Sci, Hefei, Peoples R China
来源
CELL REPORTS METHODS | 2024年 / 4卷 / 07期
基金
中国国家自然科学基金;
关键词
DISCOVERY; NETWORK; MOUSE;
D O I
10.1016/j.crmeth.2024.100813
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Quantification of cell identity from single-cell gene expression profiles
    Efroni, Idan
    Ip, Pui-Leng
    Nawy, Tal
    Mello, Alison
    Birnbaum, Kenneth D.
    GENOME BIOLOGY, 2015, 16
  • [22] Spatial patterns of gene expression are unveiled in the chick primitive streak by ordering single-cell transcriptomes
    Vermillion, Katie L.
    Bacher, Rhonda
    Tannenbaum, Alex P.
    Swanson, Scott
    Jiang, Peng
    Chu, Li-Fang
    Stewart, Ron
    Thomson, James A.
    Vereide, David T.
    DEVELOPMENTAL BIOLOGY, 2018, 439 (01) : 30 - 41
  • [23] Kidney Single-cell Transcriptomes Predict Spatial Corticomedullary Gene Expression and Tissue Osmolality Gradients
    Hinze, Christian
    Karaiskos, Nikos
    Boltengagen, Anastasiya
    Walentin, Katharina
    Redo, Klea
    Himmerkus, Nina
    Bleich, Markus
    Potter, S. Steven
    Potter, Andrew S.
    Eckardt, Kai-Uwe
    Kocks, Christine
    Rajewsky, Nikolaus
    Schmidt-Ott, Kai M.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (02): : 291 - 306
  • [24] Single-cell gene expression analysis
    Richardson, PJ
    Lee, K
    RADIATION RESEARCH, 2001, 156 (04) : 435 - 435
  • [25] Single-cell gene expression profiling
    Levsky, JM
    Shenoy, SM
    Pezo, RC
    Singer, RH
    SCIENCE, 2002, 297 (5582) : 836 - 840
  • [26] Dynamics of single-cell gene expression
    Longo, Diane
    Hasty, Jeff
    MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1)
  • [27] Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
    Wang, Jiacheng
    Chen, Yaojia
    Zou, Quan
    PLOS GENETICS, 2023, 19 (09):
  • [28] Identification of gene regulation models from single-cell data
    Weber, Lisa
    Raymond, William
    Munsky, Brian
    PHYSICAL BIOLOGY, 2018, 15 (05)
  • [29] Putative cell type discovery from single-cell gene expression data
    Miao, Zhichao
    Moreno, Pablo
    Huang, Ni
    Papatheodorou, Irene
    Brazma, Alvis
    Teichmann, Sarah A.
    NATURE METHODS, 2020, 17 (06) : 621 - +
  • [30] Putative cell type discovery from single-cell gene expression data
    Zhichao Miao
    Pablo Moreno
    Ni Huang
    Irene Papatheodorou
    Alvis Brazma
    Sarah A. Teichmann
    Nature Methods, 2020, 17 : 621 - 628