Direct cell lysis for single-cell gene expression profiling

被引:45
|
作者
Svec, David [1 ,2 ]
Andersson, Daniel [3 ]
Pekny, Milos [3 ]
Sjoback, Robert [2 ]
Kubista, Mikael [1 ,2 ]
Stahlberg, Anders [2 ,3 ,4 ]
机构
[1] Inst Biotechnol AS CR, Prague, Czech Republic
[2] TATAA Bioctr, Odinsgatan 28, S-41103 Gothenburg, Sweden
[3] Univ Gothenburg, Sahlgrenska Acad, Ctr Brain Repair & Rehabil, Gothenburg, Sweden
[4] Univ Gothenburg, Sahlgrenska Acad, Sahlgrenska Canc Ctr, S-40530 Gothenburg, Sweden
来源
FRONTIERS IN ONCOLOGY | 2013年 / 3卷
关键词
real-time PCR; single-cell biology; single-cell gene expression; RNA spike; DNA spike; cell lysis; direct lysis; RNA purification;
D O I
10.3389/fonc.2013.00274
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The interest to analyze single and few cell samples is rapidly increasing. Numerous extraction protocols to purify nucleic acids are available, but most of them compromise severely on yield to remove contaminants and are therefore not suitable for the analysis of samples containing small numbers of transcripts only. Here, we evaluate 17 direct cell lysis protocols for transcript yield and compatibility with downstream reverse transcription quantitative real-time PCR. Four endogenously expressed genes are assayed together with RNA and DNA spikes in the samples. We found bovine serum albumin (BSA) to be the best lysis agent, resulting in efficient cell lysis, high RNA stability, and enhanced reverse transcription efficiency. Furthermore, we found direct cell lysis with BSA superior to standard column based extraction methods, when analyzing from 1 up to 512 mammalian cells. In conclusion, direct cell lysis protocols based on BSA can be applied with most cell collection methods and are compatible with most analytical workflows to analyze single -cells as well as samples composed of small numbers of cells.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Single-cell gene expression profiling
    Levsky, JM
    Shenoy, SM
    Pezo, RC
    Singer, RH
    [J]. SCIENCE, 2002, 297 (5582) : 836 - 840
  • [2] The added value of single-cell gene expression profiling
    Stahlberg, Anders
    Rusnakova, Vendula
    Kubista, Mikael
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2013, 12 (02) : 81 - 89
  • [3] A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection
    Dong, Hui
    Sun, Hao
    [J]. SENSORS, 2016, 16 (09):
  • [4] Towards Single-Cell Gene Expression Profiling: Assessing Amplification Biases
    Vassou, Despoina
    Arhondakis, Stilianos
    Kalantzaki, Kalliopi
    Zervakis, Michalis
    Kafetzopoulos, Dimitris
    [J]. 6TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2015, 45 : 598 - +
  • [5] Single cell gene expression profiling
    Levsky, JM
    Shenoy, SM
    Pezo, RC
    Singer, RH
    [J]. FASEB JOURNAL, 2002, 16 (05): : A1092 - A1093
  • [6] Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations
    Stahlberg, Anders
    Andersson, Daniel
    Aurelius, Johan
    Faiz, Maryam
    Pekna, Marcela
    Kubista, Mikael
    Pekny, Milos
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 (04) : e24
  • [7] Streamlined analysis of heterogeneity in cell populations using single-cell gene expression profiling.
    May, A. P.
    Lebofsky, R.
    Leyrat, A.
    Fowler, B.
    Shuga, J.
    Chen, P.
    Wang, J.
    Toppani, D.
    Thu, M.
    Wang, M.
    West, J.
    Weaver, S.
    Jones, B.
    Kemp, D.
    Norris, M.
    Unger, M.
    Charn, T-H.
    Jones, B.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [8] Dynamics of single-cell gene expression
    Longo, Diane
    Hasty, Jeff
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2006, 2
  • [9] Single-cell gene expression analysis
    Richardson, PJ
    Lee, K
    [J]. RADIATION RESEARCH, 2001, 156 (04) : 435 - 435
  • [10] Massively parallel nanowell-based single-cell gene expression profiling
    Leonard D. Goldstein
    Ying-Jiun Jasmine Chen
    Jude Dunne
    Alain Mir
    Hermann Hubschle
    Joseph Guillory
    Wenlin Yuan
    Jingli Zhang
    Jeremy Stinson
    Bijay Jaiswal
    Kanika Bajaj Pahuja
    Ishminder Mann
    Thomas Schaal
    Leo Chan
    Sangeetha Anandakrishnan
    Chun-wah Lin
    Patricio Espinoza
    Syed Husain
    Harris Shapiro
    Karthikeyan Swaminathan
    Sherry Wei
    Maithreyan Srinivasan
    Somasekar Seshagiri
    Zora Modrusan
    [J]. BMC Genomics, 18