Bottom Contact Engineering for Ambient Fabrication of >25% Durable Perovskite Solar Cells

被引:3
|
作者
Yuan, Ligang [1 ,2 ]
Zou, Shibing [2 ]
Zhang, Kaicheng [3 ]
Huang, Peng [4 ]
Dong, Yuyan [2 ]
Wang, Jiarong [2 ]
Fan, Kezhou [5 ,6 ]
Lam, Man Yu [5 ,6 ]
Wu, Xiao [7 ]
Cheng, Wei [4 ]
Tang, Ruijia [8 ]
Chen, Wenhao [1 ]
Liu, Weiqing [1 ]
Wong, Kam Sing [5 ,6 ]
Yan, Keyou [2 ]
机构
[1] Nanchang Hangkong Univ, Sch Testing & Photoelect Engn, Key Lab Optoelect Informat Percept & Instrumentat, Key Lab Nondestruct Testing,Minist Educ, Nanchang 330063, Peoples R China
[2] South China Univ Technol, Sch Environm & Energy, State Key Lab Luminescent Mat & Devices, Guangdong Prov Key Lab Solid Wastes Pollut Control, Guangzhou 510000, Peoples R China
[3] Friedrich Alexander Univ Erlangen Nuremberg, Inst Mat Elect & Energy Technol I MEET, Martensstr 7, D-91058 Erlangen, Germany
[4] Southwest Jiaotong Univ, Res Inst Frontier Sci, Chengdu 610031, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Phys, Clearwater Bay, Hong Kong 999077, Peoples R China
[6] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Clearwater Bay, Hong Kong 999077, Peoples R China
[7] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong 999077, Peoples R China
[8] Beijing Univ Chem Technol, Coll Mat Sci & Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
bottom contact; perovskite solar cell; photodegradation; SnO2; sodium gluconate;
D O I
10.1002/adma.202409261
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The bottom contact in perovskite solar cells (PSCs) is easy to cause deep trap states and severe instability issues, especially under maximum power point tracking (MPPT). In this study, sodium gluconate (SG) is employed to disperse tin oxide (SnO2) nanoparticles (NPs) and regulate the interface contact at the buried interface. The SG-SnO2 electron transfer layer (ETL) enabled the deposition of pinhole-free perovskite films in ambient air and improved interface contact by bridging effect. SG-SnO2 PSCs achieved an impressive power conversion efficiency (PCE) of 25.34% (certified as 25.17%) with a high open-circuit voltage (V-OC) exceeding 1.19 V. The V-OC loss is less than 0.34 V relative to the 1.53 eV bandgap, and the fill factor (FF) loss is only 2.02% due to the improved contact. The SG-SnO2 PSCs retained around 90% of their initial PCEs after 1000 h operation (T-90 = 1000 h), higher than T-80 = 1000 h for the control SnO2 PSC. Microstructure analysis revealed that light-induced degradation primarily occurred at the buried holes and grain boundaries and highlighted the importance of bottom-contact engineering.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity
    Zhang, Kai
    Wang, Zheng
    Wang, Gaopeng
    Wang, Jian
    Li, Yu
    Qian, Wei
    Zheng, Shizhao
    Xiao, Shuang
    Yang, Shihe
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [22] Roll-to-Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions
    Benitez-Rodriguez, Juan F.
    Chen, Dehong
    Gao, Mei
    Caruso, Rachel A.
    SOLAR RRL, 2021, 5 (09)
  • [23] Using Interfacial Contact Engineering to Solve Nickel Oxide/Perovskite Interface Contact Issues in Inverted Perovskite Solar Cells
    Shen, Guibin
    Cai, Qingbin
    Dong, Hongye
    Wen, Xiaoning
    Xu, Xiangning
    Mu, Cheng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (09): : 3580 - 3589
  • [24] Solvent engineering for scalable fabrication of perovskite/silicon tandem solar cells in air
    Zheng, Xuntian
    Kong, Wenchi
    Wen, Jin
    Hong, Jiajia
    Luo, Haowen
    Xia, Rui
    Huang, Zilong
    Luo, Xin
    Liu, Zhou
    Li, Hongjiang
    Sun, Hongfei
    Wang, Yurui
    Liu, Chenshuaiyu
    Wu, Pu
    Gao, Han
    Li, Manya
    Bui, Anh Dinh
    Mo, Yi
    Zhang, Xueling
    Yang, Guangtao
    Chen, Yifeng
    Feng, Zhiqiang
    Nguyen, Hieu T.
    Lin, Renxing
    Li, Ludong
    Gao, Jifan
    Tan, Hairen
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [25] Molecular engineering of contact interfaces for high-performance perovskite solar cells
    Isikgor, Furkan H.
    Zhumagali, Shynggys
    Merino, Luis V. T.
    De Bastiani, Michele
    McCulloch, Iain
    De Wolf, Stefaan
    NATURE REVIEWS MATERIALS, 2023, 8 (02) : 89 - 108
  • [26] Contact Engineering: Electrode Materials for Highly Efficient and Stable Perovskite Solar Cells
    Xiao, Jia-Wen
    Shi, Congbo
    Zhou, Chenxiao
    Zhang, Deliang
    Li, Yujing
    Chen, Qi
    SOLAR RRL, 2017, 1 (09):
  • [27] Molecular engineering of contact interfaces for high-performance perovskite solar cells
    Furkan H. Isikgor
    Shynggys Zhumagali
    Luis V. T. Merino
    Michele De Bastiani
    Iain McCulloch
    Stefaan De Wolf
    Nature Reviews Materials, 2023, 8 : 89 - 108
  • [28] Ambient Engineering for High-Performance Organic Inorganic Perovskite Hybrid Solar Cells
    Huang, Jiabin
    Yu, Xuegong
    Xie, Jiangsheng
    Xu, Dikai
    Tang, Zeguo
    Cui, Can
    Yang, Deren
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (33) : 21505 - 21511
  • [29] Scalable fabrication of perovskite solar cells
    Zhen Li
    Talysa R. Klein
    Dong Hoe Kim
    Mengjin Yang
    Joseph J. Berry
    Maikel F. A. M. van Hest
    Kai Zhu
    Nature Reviews Materials, 3
  • [30] Scalable fabrication of perovskite solar cells
    Li, Zhen
    Klein, Talysa R.
    Kim, Dong Hoe
    Yang, Mengjin
    Berry, Joseph J.
    van Hest, Maikel F. A. M.
    Zhu, Kai
    NATURE REVIEWS MATERIALS, 2018, 3 (04):