Bottom Contact Engineering for Ambient Fabrication of >25% Durable Perovskite Solar Cells

被引:3
|
作者
Yuan, Ligang [1 ,2 ]
Zou, Shibing [2 ]
Zhang, Kaicheng [3 ]
Huang, Peng [4 ]
Dong, Yuyan [2 ]
Wang, Jiarong [2 ]
Fan, Kezhou [5 ,6 ]
Lam, Man Yu [5 ,6 ]
Wu, Xiao [7 ]
Cheng, Wei [4 ]
Tang, Ruijia [8 ]
Chen, Wenhao [1 ]
Liu, Weiqing [1 ]
Wong, Kam Sing [5 ,6 ]
Yan, Keyou [2 ]
机构
[1] Nanchang Hangkong Univ, Sch Testing & Photoelect Engn, Key Lab Optoelect Informat Percept & Instrumentat, Key Lab Nondestruct Testing,Minist Educ, Nanchang 330063, Peoples R China
[2] South China Univ Technol, Sch Environm & Energy, State Key Lab Luminescent Mat & Devices, Guangdong Prov Key Lab Solid Wastes Pollut Control, Guangzhou 510000, Peoples R China
[3] Friedrich Alexander Univ Erlangen Nuremberg, Inst Mat Elect & Energy Technol I MEET, Martensstr 7, D-91058 Erlangen, Germany
[4] Southwest Jiaotong Univ, Res Inst Frontier Sci, Chengdu 610031, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Phys, Clearwater Bay, Hong Kong 999077, Peoples R China
[6] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Clearwater Bay, Hong Kong 999077, Peoples R China
[7] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong 999077, Peoples R China
[8] Beijing Univ Chem Technol, Coll Mat Sci & Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
bottom contact; perovskite solar cell; photodegradation; SnO2; sodium gluconate;
D O I
10.1002/adma.202409261
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The bottom contact in perovskite solar cells (PSCs) is easy to cause deep trap states and severe instability issues, especially under maximum power point tracking (MPPT). In this study, sodium gluconate (SG) is employed to disperse tin oxide (SnO2) nanoparticles (NPs) and regulate the interface contact at the buried interface. The SG-SnO2 electron transfer layer (ETL) enabled the deposition of pinhole-free perovskite films in ambient air and improved interface contact by bridging effect. SG-SnO2 PSCs achieved an impressive power conversion efficiency (PCE) of 25.34% (certified as 25.17%) with a high open-circuit voltage (V-OC) exceeding 1.19 V. The V-OC loss is less than 0.34 V relative to the 1.53 eV bandgap, and the fill factor (FF) loss is only 2.02% due to the improved contact. The SG-SnO2 PSCs retained around 90% of their initial PCEs after 1000 h operation (T-90 = 1000 h), higher than T-80 = 1000 h for the control SnO2 PSC. Microstructure analysis revealed that light-induced degradation primarily occurred at the buried holes and grain boundaries and highlighted the importance of bottom-contact engineering.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Recent developments in perovskite materials, fabrication techniques, band gap engineering, and the stability of perovskite solar cells
    Elangovan, Naveen Kumar
    Kannadasan, Raju
    Beenarani, B. B.
    Alsharif, Mohammed H.
    Kim, Mun-Kyeom
    Inamul, Z. Hasan
    ENERGY REPORTS, 2024, 11 : 1171 - 1190
  • [32] Fabrication of Flexible Quasi-Interdigitated Back-Contact Perovskite Solar Cells
    Parkhomenko, Hryhorii P.
    Shalenov, Erik O.
    Umatova, Zarina
    Dzhumagulova, Karlygash N.
    Jumabekov, Askhat N.
    ENERGIES, 2022, 15 (09)
  • [33] Simple fabrication of perovskite solar cells with enhanced efficiency, stability, and flexibility under ambient air
    Chen, Wei-Hsiang
    Qiu, Linlin
    Zhuang, Zhishan
    Song, Lixin
    Du, Pingfan
    Xiong, Jie
    Ko, Frank
    JOURNAL OF POWER SOURCES, 2019, 442
  • [34] Fabrication of perovskite solar cells in ambient air by employing poly (triarylamine) as the hole transport layer
    Liu, Guilin
    Xi, Xi
    Dong, Weifu
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2018, 12 (11-12): : 687 - 693
  • [35] Two-Step Perovskite Solar Cells with > 25% Efficiency: Unveiling the Hidden Bottom Surface of Perovskite Layer
    Wang, Fei
    Wang, Taomiao
    Sun, Yonggui
    Liang, Xiao
    Yang, Guo
    Li, Qiannan
    Li, Yongjun
    Zhou, Xianfang
    Zhu, Quanyao
    Ng, Annie
    Lin, Haoran
    Yuan, Mingjian
    Shi, Yumeng
    Wu, Tom
    Hu, Hanlin
    ADVANCED MATERIALS, 2024, 36 (31)
  • [36] Stable and durable CH3NH3PbI3 perovskite solar cells at ambient conditions
    Rajamanickam, Nagalingam
    Kumari, Sudesh
    Vendra, Venkat Kalyan
    Lavery, Brandon W.
    Spurgeon, Joshua
    Druffel, Thad
    Sunkara, Mahendra K.
    NANOTECHNOLOGY, 2016, 27 (23)
  • [37] Inorganic Framework Composition Engineering for Scalable Fabrication of Perovskite/Silicon Tandem Solar Cells
    Luo, Haowen
    Zheng, Xuntian
    Kong, Wenchi
    Liu, Zhou
    Li, Hongjiang
    Wen, Jin
    Xia, Rui
    Sun, Hongfei
    Wu, Pu
    Wang, Yurui
    Mo, Yi
    Luo, Xin
    Huang, Zilong
    Hong, Jiajia
    Chu, Zijing
    Zhang, Xueling
    Yang, Guangtao
    Chen, Yifeng
    Feng, Zhiqiang
    Gao, Jifan
    Tan, Hairen
    ACS ENERGY LETTERS, 2023, 8 (12) : 4993 - 5002
  • [38] Eco-friendly Fabrication of Perovskite Solar Cells: From Material Engineering to Recycling
    Kurman, Olzhas
    Jung, Eunju
    Seo, Ji-Youn
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024,
  • [39] Engineering of antisolvent dripping for large-area perovskite solar cell fabrication under air ambient conditions
    Bansal, Nitin Kumar
    Ghosh, Subrata
    Porwal, Shivam
    Singh, Trilok
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (01)
  • [40] Engineering of antisolvent dripping for large-area perovskite solar cell fabrication under air ambient conditions
    Nitin Kumar Bansal
    Subrata Ghosh
    Shivam Porwal
    Trilok Singh
    Journal of Materials Science: Materials in Electronics, 2024, 35