Bottom Contact Engineering for Ambient Fabrication of >25% Durable Perovskite Solar Cells

被引:3
|
作者
Yuan, Ligang [1 ,2 ]
Zou, Shibing [2 ]
Zhang, Kaicheng [3 ]
Huang, Peng [4 ]
Dong, Yuyan [2 ]
Wang, Jiarong [2 ]
Fan, Kezhou [5 ,6 ]
Lam, Man Yu [5 ,6 ]
Wu, Xiao [7 ]
Cheng, Wei [4 ]
Tang, Ruijia [8 ]
Chen, Wenhao [1 ]
Liu, Weiqing [1 ]
Wong, Kam Sing [5 ,6 ]
Yan, Keyou [2 ]
机构
[1] Nanchang Hangkong Univ, Sch Testing & Photoelect Engn, Key Lab Optoelect Informat Percept & Instrumentat, Key Lab Nondestruct Testing,Minist Educ, Nanchang 330063, Peoples R China
[2] South China Univ Technol, Sch Environm & Energy, State Key Lab Luminescent Mat & Devices, Guangdong Prov Key Lab Solid Wastes Pollut Control, Guangzhou 510000, Peoples R China
[3] Friedrich Alexander Univ Erlangen Nuremberg, Inst Mat Elect & Energy Technol I MEET, Martensstr 7, D-91058 Erlangen, Germany
[4] Southwest Jiaotong Univ, Res Inst Frontier Sci, Chengdu 610031, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Phys, Clearwater Bay, Hong Kong 999077, Peoples R China
[6] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Clearwater Bay, Hong Kong 999077, Peoples R China
[7] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong 999077, Peoples R China
[8] Beijing Univ Chem Technol, Coll Mat Sci & Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
bottom contact; perovskite solar cell; photodegradation; SnO2; sodium gluconate;
D O I
10.1002/adma.202409261
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The bottom contact in perovskite solar cells (PSCs) is easy to cause deep trap states and severe instability issues, especially under maximum power point tracking (MPPT). In this study, sodium gluconate (SG) is employed to disperse tin oxide (SnO2) nanoparticles (NPs) and regulate the interface contact at the buried interface. The SG-SnO2 electron transfer layer (ETL) enabled the deposition of pinhole-free perovskite films in ambient air and improved interface contact by bridging effect. SG-SnO2 PSCs achieved an impressive power conversion efficiency (PCE) of 25.34% (certified as 25.17%) with a high open-circuit voltage (V-OC) exceeding 1.19 V. The V-OC loss is less than 0.34 V relative to the 1.53 eV bandgap, and the fill factor (FF) loss is only 2.02% due to the improved contact. The SG-SnO2 PSCs retained around 90% of their initial PCEs after 1000 h operation (T-90 = 1000 h), higher than T-80 = 1000 h for the control SnO2 PSC. Microstructure analysis revealed that light-induced degradation primarily occurred at the buried holes and grain boundaries and highlighted the importance of bottom-contact engineering.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Fully Doctor -bladed efficient perovskite solar cells in ambient condition via composition engineering
    Peng, Yongyi
    Zeng, Feilong
    Cheng, Yudiao
    Wang, Chunhua
    Huang, Keqing
    Xie, Pengshan
    Xie, Haipeng
    Gao, Yongli
    Yang, Junliang
    ORGANIC ELECTRONICS, 2020, 83
  • [42] Engineering of Electron-Selective Contact for Perovskite Solar Cells with Efficiency Exceeding 15%
    Hu, Qin
    Wu, Jiang
    Jiang, Chang
    Liu, Tanghao
    Que, Xinglu
    Zhu, Rui
    Gong, Qihuang
    ACS NANO, 2014, 8 (10) : 10161 - 10167
  • [43] Solvent engineering based on triethylenetetramine (TETA) for perovskite solar cells processed in ambient-air
    Timasi, N.
    Tafazoli, S.
    Nouri, E.
    Mohammadi, M. R.
    Li, Y.
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2019, 18 (05) : 1228 - 1234
  • [44] Solvent engineering based on triethylenetetramine (TETA) for perovskite solar cells processed in ambient-air
    N. Timasi
    S. Tafazoli
    E. Nouri
    M. R. Mohammadi
    Y. Li
    Photochemical & Photobiological Sciences, 2019, 18 : 1228 - 1234
  • [45] 25.91%-Efficiency and Durable Inverted Perovskite Solar Cells Enabled by a Multifunctional Molecule Mediated Precursor Engineering
    Yao, Yuqi
    Wang, Qi
    Chen, Xin
    Yang, Jiewei
    Tang, Weijian
    Xu, Xiaopeng
    Wu, Yihui
    Peng, Qiang
    SMALL, 2025, 21 (05)
  • [46] Impact of the Bottom Interface Modification on the Perovskite Solar Cells
    Du Y.
    Gu B.
    Chen X.
    Li X.
    Lu H.
    Cailiao Daobao/Materials Reports, 2024, 38 (07):
  • [47] Fabrication of Planar Heterojunction Perovskite Solar Cells
    Fan, Xin
    Peng, Xiaoli
    Zhang, Shu
    Xiang, Yong
    2014 INTERNATIONAL SYMPOSIUM ON NEXT-GENERATION ELECTRONICS (ISNE), 2014,
  • [48] Inorganic perovskite/organic tandem solar cells with 25.1% certified efficiency via bottom contact modulation
    Han, Yu
    Fu, Jiehao
    Ren, Zhiwei
    Yu, Jiangsheng
    Liang, Qiong
    Xu, Zhihang
    Xie, Xiyun
    Li, Dongyang
    Ma, Ruijie
    Cao, Menghua
    Sun, Yonggui
    Yang, Chen
    He, Jiaqi
    Chang, Xiaoming
    Liu, Kuan
    Fong, Patrick W. K.
    Huang, Jiaming
    Liu, Heng
    Liu, Zhike
    Xu, Dongfang
    Cheng, Lei
    Zhang, Jiyao
    Yang, Guang
    Lu, Xinhui
    Zhu, Ye
    Tai, Qidong
    Lin, Qianqian
    Hu, Hanlin
    Yang, Yang
    Li, Gang
    NATURE ENERGY, 2025,
  • [49] Improving Heat Transfer Enables Durable Perovskite Solar Cells
    Yang, Ning
    Pei, Fengtao
    Dou, Jie
    Zhao, Yizhou
    Huang, Zijian
    Ma, Yue
    Ma, Sai
    Wang, Chenyue
    Zhang, Xiao
    Wang, Hao
    Zhu, Cheng
    Bai, Yang
    Zhou, Huanping
    Song, Tinglu
    Chen, Yihua
    Chen, Qi
    ADVANCED ENERGY MATERIALS, 2022, 12 (24)
  • [50] Printing Perovskite Solar Cells in Ambient Air: A Review
    Ouedraogo, Nabonswende Aida Nadege
    Ouyang, Yunfei
    Guo, Bing
    Xiao, Zuo
    Zuo, Chuantian
    Chen, Kun
    He, Zijuan
    Odunmbaku, George Omololu
    Ma, Zhu
    Long, Wei
    Yang, Junliang
    Yuan, Yongbo
    Fang, Junfeng
    Bao, Qinye
    Yi, Chenyi
    Fang, Xingzhong
    Dong, Hua
    Yang, Ye
    Liu, Fangyang
    Yan, Keyou
    Ding, Liming
    Sun, Kuan
    ADVANCED ENERGY MATERIALS, 2024, 14 (29)