Low Mach number limit on perforated domains for the evolutionary Navier-Stokes-Fourier system

被引:0
|
作者
Basaric, Danica [1 ]
Chaudhuri, Nilasis [2 ]
机构
[1] Politecn Milan, Dept Math, Via E Bonardi 9, I-20133 Milan, Italy
[2] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, Warsaw, Poland
基金
英国工程与自然科学研究理事会;
关键词
Navier-Stokes-Fourier system; low Mach number limit; homogenization; Oberbeck-Boussinesq approximation; INCOMPRESSIBLE LIMIT; VOLUME DISTRIBUTION; TINY HOLES; HOMOGENIZATION; EQUATIONS;
D O I
10.1088/1361-6544/ad3da9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Navier-Stokes-Fourier system describing the motion of a compressible, viscous and heat-conducting fluid on a domain perforated by tiny holes. First, we identify a class of dissipative solutions to the Oberbeck-Boussinesq approximation as a low Mach number limit of the primitive system. Secondly, by proving the weak-strong uniqueness principle, we obtain strong convergence to the target system on the lifespan of the strong solution.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] ON THE ARTIFICIAL COMPRESSIBILITY METHOD FOR THE NAVIER-STOKES-FOURIER SYSTEM
    Donatelli, Donatella
    QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (03) : 469 - 485
  • [42] Navier-Stokes-Fourier system with Dirichlet boundary conditions
    Chaudhuri, Nilasis
    Feireisl, Eduard
    APPLICABLE ANALYSIS, 2022, 101 (12) : 4076 - 4094
  • [43] On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions
    Bulicek, Miroslav
    Lewandowski, Roger
    Malek, Josef
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2011, 52 (01): : 89 - 114
  • [44] Uniform regularity for the compressible Navier-Stokes system with low Mach number in domains with boundaries
    Masmoudi, Nader
    Rousset, Frederic
    Sun, Changzhen
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 161 : 166 - 215
  • [45] Stochastic Navier-Stokes-Fourier Equations
    Breit, Dominic
    Feireisl, Eduard
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (03) : 911 - 975
  • [46] Adjoint algorithms for the Navier-Stokes equations in the low Mach number limit
    Chandler, Gary J.
    Juniper, Matthew P.
    Nichols, Joseph W.
    Schmid, Peter J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) : 1900 - 1916
  • [47] Homogenization and singular limits for the complete Navier-Stokes-Fourier system
    Feireisl, Eduard
    Novotny, Antonin
    Takahashi, Takeo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (01): : 33 - 57
  • [48] Inviscid Incompressible Limits of the Full Navier-Stokes-Fourier System
    Eduard Feireisl
    Antonín Novotný
    Communications in Mathematical Physics, 2013, 321 : 605 - 628
  • [49] On the Vanishing Dissipation Limit for the Full Navier-Stokes-Fourier System with Non-slip Condition
    Wang, Y-G
    Zhu, S-Y
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (02) : 393 - 419
  • [50] Navier-Stokes-Fourier equations as a parabolic limit of a general hyperbolic system of rational extended thermodynamics
    Arima, Takashi
    Mentrelli, Andrea
    Ruggeri, Tommaso
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2023, 151