On the Vanishing Dissipation Limit for the Full Navier-Stokes-Fourier System with Non-slip Condition

被引:4
|
作者
Wang, Y-G [1 ,2 ]
Zhu, S-Y [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, SHL MAC, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Vanishing dissipation limit; full Navier-Stokes-Fourier system; non-slip condition;
D O I
10.1007/s00021-017-0326-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the vanishing dissipation limit problem for the full Navier-Stokes-Fourier equations with non-slip boundary condition in a smooth bounded domain Omega subset of R-3. By using Kato's idea (Math Sci Res Inst Publ 2:8-5-98, 1984) of constructing an artificial boundary layer, we obtain a sufficient condition for the convergence of the solution of the full Navier Stokes Fourier equations to the solution of the compressible Kuler equations in the energy space L-2(Omega) uniformly in time.
引用
收藏
页码:393 / 419
页数:27
相关论文
共 50 条