Low Mach number limit on perforated domains for the evolutionary Navier-Stokes-Fourier system

被引:0
|
作者
Basaric, Danica [1 ]
Chaudhuri, Nilasis [2 ]
机构
[1] Politecn Milan, Dept Math, Via E Bonardi 9, I-20133 Milan, Italy
[2] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, Warsaw, Poland
基金
英国工程与自然科学研究理事会;
关键词
Navier-Stokes-Fourier system; low Mach number limit; homogenization; Oberbeck-Boussinesq approximation; INCOMPRESSIBLE LIMIT; VOLUME DISTRIBUTION; TINY HOLES; HOMOGENIZATION; EQUATIONS;
D O I
10.1088/1361-6544/ad3da9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Navier-Stokes-Fourier system describing the motion of a compressible, viscous and heat-conducting fluid on a domain perforated by tiny holes. First, we identify a class of dissipative solutions to the Oberbeck-Boussinesq approximation as a low Mach number limit of the primitive system. Secondly, by proving the weak-strong uniqueness principle, we obtain strong convergence to the target system on the lifespan of the strong solution.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] PARTIAL REGULARITY FOR THE NAVIER-STOKES-FOURIER SYSTEM
    Consiglieri, Luisa
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1653 - 1670
  • [22] Stationary solutions of the Navier-Stokes-Fourier system in planar domains with impermeable boundary
    Ciuperca, Ionel Sorin
    Feireisl, Eduard
    Jai, Mohammed
    Petrov, Adrien
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 140 : 110 - 138
  • [23] Statistical solutions for the Navier-Stokes-Fourier system
    Feireisl, Eduard
    Lukacova-Medvid'ova, Maria
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (02): : 1021 - 1045
  • [24] PARTIAL REGULARITY FOR THE NAVIER-STOKES-FOURIER SYSTEM
    Luisa Consiglieri
    Acta Mathematica Scientia, 2011, 31 (05) : 1653 - 1670
  • [25] Low Mach number limit of the full compressible Navier-Stokes-Maxwell system
    Li, Fucai
    Mu, Yanmin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 334 - 344
  • [26] The combined quasineutral and low Mach number limit of the Navier-Stokes-Poisson system
    Pan, Xinghong
    Zhu, Lu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):
  • [27] INCOMPRESSIBLE NAVIER-STOKES-FOURIER LIMIT FROM THE LANDAU EQUATION
    Rachid, Mohamad
    KINETIC AND RELATED MODELS, 2021, 14 (04) : 599 - 638
  • [28] Low Mach number limit of Navier-Stokes equations with large temperature variations in bounded domains
    Ju, Qiangchang
    Ou, Yaobin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 164 : 131 - 157
  • [29] Low mach number limit of the full Navier-Stokes equations
    Alazard, T
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) : 1 - 73
  • [30] Low Mach Number Limit of the Full Navier-Stokes Equations
    Thomas Alazard
    Archive for Rational Mechanics and Analysis, 2006, 180 : 1 - 73