Stochastic Navier-Stokes-Fourier Equations

被引:5
|
作者
Breit, Dominic [1 ]
Feireisl, Eduard [2 ]
机构
[1] Heriot Watt Univ, Dept Math, Riccarton Edinburgh EH14 4AS, Scotland
[2] Acad Sci Czech Republ, Inst Math, Zitna 25, CZ-11567 Prague 1, Czech Republic
基金
欧洲研究理事会;
关键词
Compressible fluids; heat-conducting fluid; stochastic Navier-Stokes-Fourier system; weak solution; martingale solution; FLUIDS GLOBAL EXISTENCE; COMPRESSIBLE FLUIDS; INCOMPRESSIBLE LIMIT; EULER EQUATIONS; WAVE-EQUATIONS; WEAK SOLUTIONS; MARTINGALE; FLOWS;
D O I
10.1512/iumj.2020.69.7895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the full Navier-Stokes-Fourier system governing the motion of a general viscous, heat-conducting, and compressible fluid subject to stochastic perturbation. Stochastic effects are implemented through (i) random initial data, (ii) a forcing term in the momentum equation represented by a multiplicative white noise, (iii) random heat source in the internal energy balance. We establish existence of a weak martingale solution under physically grounded structural assumptions. As a byproduct of our theory we can show that stationary martingale solutions only exist in certain trivial cases.
引用
收藏
页码:911 / 975
页数:65
相关论文
共 50 条
  • [1] REFINED NAVIER-STOKES-FOURIER EQUATIONS FOR RAREFIED POLYATOMIC GASES
    Rahimi, Behnam
    Struchtrup, Henning
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, 2014, 2014,
  • [2] REGULARITY FOR THE NAVIER-STOKES-FOURIER SYSTEM
    Consiglieri, Luisa
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2009, 1 (04): : 583 - 604
  • [3] A group analysis of the 2D Navier-Stokes-Fourier equations
    Grassi, V
    Leo, RA
    Soliani, G
    Tempesta, P
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 293 (3-4) : 421 - 434
  • [4] Shock-wave structure based on the Navier-Stokes-Fourier equations
    Uribe, F. J.
    Velasco, R. M.
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [5] AN EXTENSION TO THE NAVIER-STOKES-FOURIER EQUATIONS BY CONSIDERING MOLECULAR COLLISIONS WITH BOUNDARIES
    Arlemark, Erik J.
    Dadzie, S. Kokou
    Reese, Jason M.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, PTS A AND B, 2008, : 95 - 102
  • [6] A Blow-up Criterion for the Modified Navier-Stokes-Fourier Equations
    Fan, Jishan
    Ozawa, Tohru
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (02)
  • [7] Navier-Stokes-Fourier system with phase transitions
    Watson, Stephen J. J.
    MECCANICA, 2023, 58 (06) : 1163 - 1172
  • [8] On the Steady Compressible Navier-Stokes-Fourier System
    Mucha, Piotr B.
    Pokorny, Milan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (01) : 349 - 377
  • [9] Penalization method for the Navier-Stokes-Fourier system
    Basaric, Danica
    Feireisl, Eduard
    Lukacova-Medvicdova, Maria
    Mizerova, Hana
    Yuan, Yuhuan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (06) : 1911 - 1938
  • [10] PARTIAL REGULARITY FOR THE NAVIER-STOKES-FOURIER SYSTEM
    Consiglieri, Luisa
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1653 - 1670