MACHINE LEARNING-BASED RADIOMIC MODEL USING MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING FOR PREDICTION OF POSTOPERATIVE VISUAL RECOVERY OF PITUITARY ADENOMA PATIENTS

被引:0
|
作者
Zhang, Y. [1 ]
Chen, C. [1 ]
Xu, J. [1 ]
机构
[1] Sichuan Univ, West China Hosp, Chengdu, Peoples R China
关键词
D O I
10.1093/neuonc/noad137.350
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
P13.16.A
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Radiomics using multiparametric magnetic resonance imaging to predict postoperative visual outcomes of patients with pituitary adenoma
    Zhang, Yang
    Huang, Zhouyang
    Zhao, Yanjie
    Xu, Jianfeng
    Chen, Chaoyue
    Xu, Jianguo
    ASIAN JOURNAL OF SURGERY, 2025, 48 (01) : 166 - 172
  • [2] Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomic Model for Discrimination of Pathological Subtypes of Craniopharyngioma
    Huang, Zhou-San
    Xiao, Xiang
    Li, Xiao-Dan
    Mo, Hai-Zhu
    He, Wen-Le
    Deng, Yao-Hong
    Lu, Li-Jun
    Wu, Yuan-Kui
    Liu, Hao
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (05) : 1541 - 1550
  • [3] Radiomic analysis of preoperative magnetic resonance imaging for the prediction of pituitary adenoma consistency
    Mendi, Boekebatur Ahmet Rasit
    Batur, Halitcan
    Cay, Nurdan
    Cakir, Banu Topcu
    ACTA RADIOLOGICA, 2023, 64 (08) : 2470 - 2478
  • [4] The Optimal Time for Postoperative Magnetic Resonance Imaging of the Sella in Patients With Pituitary Adenoma
    Ghorbani, Mohammad
    Keykhosravi, Ehsan
    Hasanpour, Mohammad
    Ardakani, Ali Abbasian
    Hosseini, Ehsan Mohammad
    BASIC AND CLINICAL NEUROSCIENCE, 2024, 15 (05) : 649 - 658
  • [5] Brain Magnetic Resonance Imaging Radiomic Signature and Machine Learning Model Prediction of Hepatic Encephalopathy in Adult Cirrhotic Patients
    Sparacia, Gianvincenzo
    Colelli, Giulia
    Parla, Giuseppe
    Mamone, Giuseppe
    Maruzzelli, Luigi
    Lo Re, Vincenzina
    Avorio, Federica
    Miraglia, Roberto
    Pichiecchio, Anna
    LIFE-BASEL, 2025, 15 (03):
  • [6] A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging
    Peng, AiJun
    Dai, HuMing
    Duan, HaiHan
    Chen, YaXing
    Huang, JianHan
    Zhou, LiangXue
    Chen, LiangYin
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 125
  • [7] Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics Model for Preoperative Predicting the Deep Stromal Invasion in Patients with Early Cervical Cancer
    Yan, Haowen
    Huang, Gaoting
    Yang, Zhihe
    Chen, Yirong
    Xiang, Zhiming
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (01): : 230 - 246
  • [8] Machine learning-based multiparametric magnetic resonance imaging radiomics model for distinguishing central neurocytoma from glioma of lateral ventricle
    Mo, Haizhu
    Liang, Wen
    Huang, Zhousan
    Li, Xiaodan
    Xiao, Xiang
    Liu, Hao
    He, Jianming
    Xu, Yikai
    Wu, Yuankui
    EUROPEAN RADIOLOGY, 2023, 33 (06) : 4259 - 4269
  • [9] A Machine Learning-Based Prediction of Diabetes Insipidus in Patients Undergoing Endoscopic Transsphenoidal Surgery for Pituitary Adenoma
    Hou, Siyuan
    Li, Xiaomin
    Meng, Fanyue
    Liu, Shaokun
    Wang, Zhenlin
    WORLD NEUROSURGERY, 2023, 175 : E55 - E63
  • [10] Machine learning-based prediction of upgrading on magnetic resonance imaging targeted biopsy in patients eligible for active surveillance
    ElKarami, Bashier
    Deebajah, Mustafa
    Polk, Seth
    Peabody, James
    Shahrrava, Behnam
    Menon, Mani
    Alkhateeb, Abedalrhman
    Alanee, Shaheen
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2022, 40 (05) : 191.e15 - 191.e20