MACHINE LEARNING-BASED RADIOMIC MODEL USING MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING FOR PREDICTION OF POSTOPERATIVE VISUAL RECOVERY OF PITUITARY ADENOMA PATIENTS

被引:0
|
作者
Zhang, Y. [1 ]
Chen, C. [1 ]
Xu, J. [1 ]
机构
[1] Sichuan Univ, West China Hosp, Chengdu, Peoples R China
关键词
D O I
10.1093/neuonc/noad137.350
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
P13.16.A
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Clinical and Magnetic Resonance Imaging Radiomics-Based Survival Prediction in Glioblastoma Using Multiparametric Magnetic Resonance Imaging
    Bathla, Girish
    Soni, Neetu
    Ward, Caitlin
    Maheshwarappa, Ravishankar Pillenahalli
    Agarwal, Amit
    Priya, Sarv
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2023, 47 (06) : 919 - 923
  • [22] Machine learning-based survival prediction model for postoperative parotid mucoepidermoid carcinoma
    Zihan, C.
    Ying, L.
    Zongwei, H.
    Sufang, Q.
    ANNALS OF ONCOLOGY, 2023, 34 : S578 - S578
  • [23] Machine learning-based prediction models affecting the recovery of postoperative bowel function for patients undergoing colorectal surgeries
    Yang, Shuguang
    Zhao, Huiying
    An, Youzhong
    Guo, Fuzheng
    Zhang, Hua
    Gao, Zhidong
    Ye, Yingjiang
    BMC SURGERY, 2024, 24 (01)
  • [24] Machine learning-based classification of pineal germinoma from magnetic resonance imaging
    Supbumrung, Suchada
    Kaewborisutsakul, Anukoon
    Tunthanathip, Thara
    WORLD NEUROSURGERY-X, 2023, 20
  • [25] The Relationship Between Posterior Pituitary Bright Spot on Magnetic Resonance Imaging (MRI) and Postoperative Diabetes Insipidus for Pituitary Adenoma Patients
    Wang, Shousen
    Lin, Kunzhe
    Xiao, Deyong
    Wei, Liangfeng
    Zhao, Lin
    MEDICAL SCIENCE MONITOR, 2018, 24 : 6579 - 6586
  • [26] Comparing machine and deep learning-based algorithms for prediction of clinical improvement in psychosis with functional magnetic resonance imaging
    Smucny, Jason
    Davidson, Ian
    Carter, Cameron S.
    HUMAN BRAIN MAPPING, 2021, 42 (04) : 1197 - 1205
  • [27] Prediction of carcinogenic human papillomavirus types in cervical cancer from multiparametric magnetic resonance images with machine learning-based radiomics models
    Ince, Okan
    Uysal, Emre
    Durak, Gorkem
    Onol, Suzan
    Yilmaz, Binnur Donmez
    Erturk, Sukru Mehmet
    Onder, Hakan
    DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2023, 29 (03): : 460 - 468
  • [28] Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging
    Vincenza Granata
    Roberta Fusco
    Maria Chiara Brunese
    Annabella Di Mauro
    Antonio Avallone
    Alessandro Ottaiano
    Francesco Izzo
    Nicola Normanno
    Antonella Petrillo
    La radiologia medica, 2024, 129 : 420 - 428
  • [29] Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging
    Granata, Vincenza
    Fusco, Roberta
    Brunese, Maria Chiara
    Di Mauro, Annabella
    Avallone, Antonio
    Ottaiano, Alessandro
    Izzo, Francesco
    Normanno, Nicola
    Petrillo, Antonella
    RADIOLOGIA MEDICA, 2024, 129 (03): : 420 - 428
  • [30] Detection and classification of glioma, meningioma, pituitary tumor, and normal in brain magnetic resonance imaging using deep learning-based hybrid model
    Muhammed Yildirim
    Emine Cengil
    Yeşim Eroglu
    Ahmet Cinar
    Iran Journal of Computer Science, 2023, 6 (4) : 455 - 464