MACHINE LEARNING-BASED RADIOMIC MODEL USING MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING FOR PREDICTION OF POSTOPERATIVE VISUAL RECOVERY OF PITUITARY ADENOMA PATIENTS

被引:0
|
作者
Zhang, Y. [1 ]
Chen, C. [1 ]
Xu, J. [1 ]
机构
[1] Sichuan Univ, West China Hosp, Chengdu, Peoples R China
关键词
D O I
10.1093/neuonc/noad137.350
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
P13.16.A
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Machine learning–based multiparametric magnetic resonance imaging radiomics model for distinguishing central neurocytoma from glioma of lateral ventricle
    Haizhu Mo
    Wen Liang
    Zhousan Huang
    Xiaodan Li
    Xiang Xiao
    Hao Liu
    Jianming He
    Yikai Xu
    Yuankui Wu
    European Radiology, 2023, 33 : 4259 - 4269
  • [42] A machine learning-based prediction model for postoperative delirium in cardiac valve surgery using electronic health records
    Li, Qiuying
    Li, Jiaxin
    Chen, Jiansong
    Zhao, Xu
    Zhuang, Jian
    Zhong, Guoping
    Song, Yamin
    Lei, Liming
    BMC CARDIOVASCULAR DISORDERS, 2024, 24 (01):
  • [43] Prediction of bone invasion of oral squamous cell carcinoma using a magnetic resonance imaging-based machine learning model
    Ozturk, Elif Meltem Aslan
    Unsal, Guerkan
    Erisir, Ferhat
    Orhan, Kaan
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2024, 281 (12) : 6585 - 6597
  • [44] Preoperative prediction of tumor deposits in rectal cancer with clinical-magnetic resonance deep learning-based radiomic models
    Fu, Chunlong
    Shao, Tingting
    Hou, Min
    Qu, Jiali
    Li, Ping
    Yang, Zebin
    Shan, Kangfei
    Wu, Meikang
    Li, Weida
    Wang, Xuan
    Zhang, Jingfeng
    Luo, Fanghong
    Zhou, Long
    Sun, Jihong
    Zhao, Fenhua
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [45] Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning
    Zhang Chao
    Heng Xueyuan
    Neng Wenpeng
    Chen Haixin
    Sun Aigang
    Li Jinxing
    Wang Mingguang
    中华神经外科杂志(英文), 2022, (04)
  • [46] Three-dimensional magnetic resonance imaging-based statistical shape analysis and machine learning-based prediction of patellofemoral instability
    Nagawa, Keita
    Inoue, Kaiji
    Hara, Yuki
    Shimizu, Hirokazu
    Tsuchihashi, Saki
    Matsuura, Koichiro
    Kozawa, Eito
    Sugita, Naoki
    Niitsu, Mamoru
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning
    Zhang C.
    Heng X.
    Neng W.
    Chen H.
    Sun A.
    Li J.
    Wang M.
    Chinese Neurosurgical Journal, 8 (1)
  • [48] A novel diagnostic method for pituitary adenoma based on magnetic resonance imaging using a convolutional neural network
    Qian, Yu
    Qiu, Yue
    Li, Cheng-Cheng
    Wang, Zhong-Yuan
    Cao, Bo-Wen
    Huang, Hong-Xin
    Ni, Yi-Hong
    Chen, Lu-Lu
    Sun, Jin-Yu
    PITUITARY, 2020, 23 (03) : 246 - 252
  • [49] A novel diagnostic method for pituitary adenoma based on magnetic resonance imaging using a convolutional neural network
    Yu Qian
    Yue Qiu
    Cheng-Cheng Li
    Zhong-Yuan Wang
    Bo-Wen Cao
    Hong-Xin Huang
    Yi-Hong Ni
    Lu-Lu Chen
    Jin-Yu Sun
    Pituitary, 2020, 23 : 246 - 252
  • [50] Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients
    Tahmassebi, Amirhessam
    Wengert, Georg J.
    Helbich, Thomas H.
    Bago-Horvath, Zsuzsanna
    Alaei, Sousan
    Bartsch, Rupert
    Dubsky, Peter
    Balizen, Pascal
    Clausen, Paola
    Kapetas, Panagiotis
    Morris, Elizabeth A.
    Meyer-Baese, Anke
    Pinker, Katja
    INVESTIGATIVE RADIOLOGY, 2019, 54 (02) : 110 - 117