MACHINE LEARNING-BASED RADIOMIC MODEL USING MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING FOR PREDICTION OF POSTOPERATIVE VISUAL RECOVERY OF PITUITARY ADENOMA PATIENTS

被引:0
|
作者
Zhang, Y. [1 ]
Chen, C. [1 ]
Xu, J. [1 ]
机构
[1] Sichuan Univ, West China Hosp, Chengdu, Peoples R China
关键词
D O I
10.1093/neuonc/noad137.350
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
P13.16.A
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients
    Chen, Shujun
    Shu, Zhenyu
    Li, Yongfeng
    Chen, Bo
    Tang, Lirong
    Mo, Wenju
    Shao, Guoliang
    Shao, Feng
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [32] Radiomic analysis based on magnetic resonance imaging for the prediction of VEGF expression in hepatocellular carcinoma patients
    Yang, Cui
    Zhang, Ze-Ming
    Zhao, Zhang-Ping
    Wang, Zhi-Qing
    Zheng, Jing
    Xiao, Hua-jing
    Xu, Hong
    Liu, Hui
    Yang, Lin
    ABDOMINAL RADIOLOGY, 2024, 49 (11) : 3824 - 3833
  • [33] Machine Learning Models and Multiparametric Magnetic Resonance Imaging for the Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer
    Herrero Vicent, Carmen
    Tudela, Xavier
    Moreno Ruiz, Paula
    Pedralva, Victor
    Jimenez Pastor, Ana
    Ahicart, Daniel
    Rubio Novella, Silvia
    Meneu, Isabel
    Montes Albuixech, Angela
    Angel Santamaria, Miguel
    Fonfria, Maria
    Fuster-Matanzo, Almudena
    Olmos Anton, Santiago
    Martinez de Duenas, Eduardo
    CANCERS, 2022, 14 (14)
  • [34] Magnetic resonance shoulder imaging using deep learning-based algorithm
    Liu, Jing
    Li, Wei
    Li, Ziyuan
    Yang, Junzhe
    Wang, Ke
    Cao, Xinming
    Qin, Naishan
    Xue, Ke
    Dai, Yongming
    Wu, Peng
    Qiu, Jianxing
    EUROPEAN RADIOLOGY, 2023, 33 (07) : 4864 - 4874
  • [35] Machine Learning Using Multiparametric Magnetic Resonance Imaging Radiomic Feature Analysis to Predict Ki-67 in World Health Organization Grade I Meningiomas
    Khanna, Omaditya
    Kazerooni, Anahita Fathi
    Farrell, Christopher J.
    Baldassari, Michael P.
    Alexander, Tyler D.
    Karsy, Michael
    Greenberger, Benjamin A.
    Garcia, Jose A.
    Sako, Chiharu
    Evans, James J.
    Judy, Kevin D.
    Andrews, David W.
    Flanders, Adam E.
    Sharan, Ashwini D.
    Dicker, Adam P.
    Shi, Wenyin
    Davatzikos, Christos
    NEUROSURGERY, 2021, 89 (05) : 928 - 936
  • [36] Machine learning-based prediction model for postoperative delirium in non-cardiac surgery
    Lee, Dong Yun
    Oh, Ah Ran
    Park, Jungchan
    Lee, Seung-Hwa
    Choi, Byungjin
    Yang, Kwangmo
    Kim, Ha Yeon
    Park, Rae Woong
    BMC PSYCHIATRY, 2023, 23 (01)
  • [37] Machine learning-based prediction model for postoperative delirium in non-cardiac surgery
    Dong Yun Lee
    Ah Ran Oh
    Jungchan Park
    Seung-Hwa Lee
    Byungjin Choi
    Kwangmo Yang
    Ha Yeon Kim
    Rae Woong Park
    BMC Psychiatry, 23
  • [38] Deep learning-based PI-RADS score estimation to detect prostate cancer using multiparametric magnetic resonance imaging
    Yildirim, Kadir
    Yildirim, Muhammed
    Eryesil, Hasan
    Talo, Muhammed
    Yildirim, Ozal
    Karabatak, Murat
    Ogras, Mehmet Sezai
    Artas, Hakan
    Acharya, U. Rajendra
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [39] Machine Learning-Based Models for Magnetic Resonance Imaging (MRI)-Based Brain Tumor Classification
    Asiri, Abdullah A.
    Khan, Bilal
    Muhammad, Fazal
    ur Rahman, Shams
    Alshamrani, Hassan A.
    Alshamrani, Khalaf A.
    Irfan, Muhammad
    Alqhtani, Fawaz F.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (01): : 299 - 312
  • [40] The Application of a Machine Learning-Based Brain Magnetic Resonance Imaging Approach in Major Depression
    Na, Kyoung-Sae
    Kim, Yong-Ku
    MAJOR DEPRESSIVE DISORDER: RETHINKING AND UNDERSTANDING RECENT DISCOVERIES, 2021, 1305 : 57 - 69