Deep learning promoted target volumes delineation of total marrow and total lymphoid irradiation for accelerated radiotherapy: A multi-institutional study

被引:0
|
作者
Xue, Xudong [1 ,2 ]
Shi, Jun [3 ]
Zeng, Hui [4 ,5 ]
Yan, Bing [2 ]
Liu, Lei [2 ]
Jiang, Dazhen [6 ]
Wang, Xiaoyong [6 ]
Liu, Hui [6 ]
Jiang, Man [7 ]
Shen, Jianjun [2 ]
An, Hong [3 ]
Liu, An [8 ]
机构
[1] Huazhong Univ Sci & Technol, Hubei Canc Hosp, Tongji Med Coll, Dept Radiat Oncol, Wuhan 430079, Peoples R China
[2] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Radiat Oncol, Div Life Sci & Med, Hefei 230001, Peoples R China
[3] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China
[4] Jianghan Univ, Wuhan Hosp 6, Dept Radiotherapy & Oncol, Wuhan 430015, Peoples R China
[5] Jianghan Univ, Affiliated Hosp, Wuhan 430015, Peoples R China
[6] Wuhan Univ, Zhongnan Hosp, Hubei Canc Clin Study Ctr, Hubei Key Lab Tumor Biol Behav,Dept Radiat & Med O, Wuhan 430071, Peoples R China
[7] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept Nucl Engn & Technol, Wuhan 430000, Peoples R China
[8] City Hope Med Ctr, Dept Radiat Oncol, Duarte, CA 91010 USA
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2024年 / 123卷
关键词
TMI; TMLI; Auto-segmentation; Deep learning; TOTAL-BODY IRRADIATION; HELICAL TOMOTHERAPY; RANDOMIZED-TRIAL; TRANSPLANTATION; CYCLOPHOSPHAMIDE; SEGMENTATION; FEASIBILITY; LEUKEMIA; BUSULFAN; CHILDREN;
D O I
10.1016/j.ejmp.2024.103393
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background and purpose: One of the current roadblocks to the widespread use of Total Marrow Irradiation (TMI) and Total Marrow and Lymphoid Irradiation (TMLI) is the challenging difficulties in tumor target contouring workflow. This study aims to develop a hybrid neural network model that promotes accurate, automatic, and rapid segmentation of multi-class clinical target volumes. Materials and methods: Patients who underwent TMI and TMLI from January 2018 to May 2022 were included. Two independent oncologists manually contoured eight target volumes for patients on CT images. A novel DualEncoder Alignment Network (DEA-Net) was developed and trained using 46 patients from one internal institution and independently evaluated on a total of 39 internal and external patients. Performance was evaluated on accuracy metrics and delineation time. Results: The DEA-Net achieved a mean dice similarity coefficient of 90.1 % +/- 1.8 % for internal testing dataset (23 patients) and 91.1 % +/- 2.5 % for external testing dataset (16 patients). The 95 % Hausdorff distance and average symmetric surface distance were 2.04 +/- 0.62 mm and 0.57 +/- 0.11 mm for internal testing dataset, and 2.17 +/- 0.68 mm, and 0.57 +/- 0.20 mm for external testing dataset, respectively, outperforming most of existing state -of -the -art methods. In addition, the automatic segmentation workflow reduced delineation time by 98 % compared to the conventional manual contouring process (mean 173 +/- 29 s vs. 12168 +/- 1690 s; P < 0.001). Ablation study validate the effectiveness of hybrid structures. Conclusion: The proposed deep learning framework achieved comparable or superior target volume delineation accuracy, significantly accelerating the radiotherapy planning process.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study
    Choi, Min Seo
    Chang, Jee Suk
    Kim, Kyubo
    Kim, Jin Hee
    Kim, Tae Hyung
    Kim, Sungmin
    Cha, Hyejung
    Cho, Oyeon
    Choi, Jin Hwa
    Kim, Myungsoo
    Kim, Juree
    Kim, Tae Gyu
    Yeo, Seung-Gu
    Chang, Ah Ram
    Ahn, Sung-Ja
    Choi, Jinhyun
    Kang, Ki Mun
    Kwon, Jeanny
    Koo, Taeryool
    Kim, Mi Young
    Choi, Seo Hee
    Jeong, Bae Kwon
    Jang, Bum-Sup
    Jo, In Young
    Lee, Hyebin
    Kim, Nalee
    Park, Hae Jin
    Im, Jung Ho
    Lee, Sea-Won
    Cho, Yeona
    Lee, Sun Young
    Chang, Ji Hyun
    Chun, Jaehee
    Lee, Eung Man
    Kim, Jin Sung
    Shin, Kyung Hwan
    Kim, Yong Bae
    BREAST, 2024, 73
  • [42] Total body irradiation of bone marrow transplant using helical TomoTherapy with a focus on the quality of dose contribution at junction target volumes
    N. V. N. Madhusudhana Sresty
    Deleep Gudipudi
    A. Krishnam Raju
    T. Anil kumar
    V. R. P. Lakshmi
    G. Srikanth
    M. Narasimha
    Strahlentherapie und Onkologie, 2021, 197 : 722 - 729
  • [43] Total body irradiation of bone marrow transplant using helical TomoTherapy with a focus on the quality of dose contribution at junction target volumes
    Sresty, N. V. N. Madhusudhana
    Gudipudi, Deleep
    Krishnam Raju, A.
    Anil Kumar, T.
    Lakshmi, V. R. P.
    Srikanth, G.
    Narasimha, M.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2021, 197 (08) : 722 - 729
  • [44] Nomogram for predicting difficult total laparoscopic hysterectomy: a multi-institutional, retrospective model development and validation study
    Chen, Yin
    Jiang, Jiahong
    He, Min
    Zhong, Kuiyan
    Tang, Shuai
    Deng, Li
    Wang, Yanzhou
    INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (06) : 3249 - 3257
  • [45] Deep learning radiomic nomogram to predict recurrence in soft tissue sarcoma: a multi-institutional study
    Liu, Shunli
    Sun, Weikai
    Yang, Shifeng
    Duan, Lisha
    Huang, Chencui
    Xu, Jingxu
    Hou, Feng
    Hao, Dapeng
    Yu, Tengbo
    Wang, Hexiang
    EUROPEAN RADIOLOGY, 2022, 32 (02) : 793 - 805
  • [46] Deep learning radiomic nomogram to predict recurrence in soft tissue sarcoma: a multi-institutional study
    Shunli Liu
    Weikai Sun
    Shifeng Yang
    Lisha Duan
    Chencui Huang
    Jingxu Xu
    Feng Hou
    Dapeng Hao
    Tengbo Yu
    Hexiang Wang
    European Radiology, 2022, 32 : 793 - 805
  • [47] Evaluation of variability in target volume delineation for newly diagnosed glioblastoma: a multi-institutional study from the Korean Radiation Oncology Group
    Wee, Chan Woo
    Sung, Wonmo
    Kang, Hyun-Cheol
    Cho, Kwan Ho
    Han, Tae Jin
    Jeong, Bae-Kwon
    Jeong, Jae-Uk
    Kim, Haeyoung
    Kim, In Ah
    Kim, Jin Hee
    Kim, Sung Hwan
    Kim, Suzy
    Lee, Dong Soo
    Lee, Me Yeon
    Lim, Do Hoon
    Park, Hye Li
    Suh, Chang-Ok
    Yoon, Sang Min
    Kim, Il Han
    RADIATION ONCOLOGY, 2015, 10
  • [48] Evaluation of variability in target volume delineation for newly diagnosed glioblastoma: a multi-institutional study from the Korean Radiation Oncology Group
    Chan Woo Wee
    Wonmo Sung
    Hyun-Cheol Kang
    Kwan Ho Cho
    Tae Jin Han
    Bae-Kwon Jeong
    Jae-Uk Jeong
    Haeyoung Kim
    In Ah Kim
    Jin Hee Kim
    Sung Hwan Kim
    Suzy Kim
    Dong Soo Lee
    Me Yeon Lee
    Do Hoon Lim
    Hye Li Park
    Chang-Ok Suh
    Sang Min Yoon
    Il Han Kim
    Radiation Oncology, 10
  • [49] Role of radiotherapy in treatment of extramedullary relapse following total marrow and lymphoid irradiation in high-risk and/or relapsed/refractory acute leukemia
    Ladbury, Colton
    Semwal, Hemal
    Hong, Daniel
    Yang, Dongyun
    Hao, Claire
    Han, Chunhui
    Liu, An
    Marcucci, Guido
    Rosenthal, Joseph
    Hui, Susanta
    Salhotra, Amandeep
    Ali, Haris
    Nakamura, Ryotaro
    Stein, Anthony
    Al Malki, Monzr
    Wong, Jeffrey Y. C.
    Dandapani, Savita
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [50] Patterns and Outcomes of Relapse Treated With Radiotherapy Following Total Marrow and Lymphoid Irradiation in High-Risk and/or Relapsed/Refractory Acute Leukemia
    Ladbury, C. J.
    Semwal, H.
    Hong, D.
    Yang, D.
    Marcucci, G.
    Nakamura, R.
    Al Malki, M.
    Rosenthal, J.
    Stein, A.
    Hui, S. K.
    Ali, H.
    Wong, J. Y. C.
    Dandapani, S. V.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : S80 - S81