Deep learning promoted target volumes delineation of total marrow and total lymphoid irradiation for accelerated radiotherapy: A multi-institutional study

被引:0
|
作者
Xue, Xudong [1 ,2 ]
Shi, Jun [3 ]
Zeng, Hui [4 ,5 ]
Yan, Bing [2 ]
Liu, Lei [2 ]
Jiang, Dazhen [6 ]
Wang, Xiaoyong [6 ]
Liu, Hui [6 ]
Jiang, Man [7 ]
Shen, Jianjun [2 ]
An, Hong [3 ]
Liu, An [8 ]
机构
[1] Huazhong Univ Sci & Technol, Hubei Canc Hosp, Tongji Med Coll, Dept Radiat Oncol, Wuhan 430079, Peoples R China
[2] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Radiat Oncol, Div Life Sci & Med, Hefei 230001, Peoples R China
[3] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China
[4] Jianghan Univ, Wuhan Hosp 6, Dept Radiotherapy & Oncol, Wuhan 430015, Peoples R China
[5] Jianghan Univ, Affiliated Hosp, Wuhan 430015, Peoples R China
[6] Wuhan Univ, Zhongnan Hosp, Hubei Canc Clin Study Ctr, Hubei Key Lab Tumor Biol Behav,Dept Radiat & Med O, Wuhan 430071, Peoples R China
[7] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept Nucl Engn & Technol, Wuhan 430000, Peoples R China
[8] City Hope Med Ctr, Dept Radiat Oncol, Duarte, CA 91010 USA
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2024年 / 123卷
关键词
TMI; TMLI; Auto-segmentation; Deep learning; TOTAL-BODY IRRADIATION; HELICAL TOMOTHERAPY; RANDOMIZED-TRIAL; TRANSPLANTATION; CYCLOPHOSPHAMIDE; SEGMENTATION; FEASIBILITY; LEUKEMIA; BUSULFAN; CHILDREN;
D O I
10.1016/j.ejmp.2024.103393
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background and purpose: One of the current roadblocks to the widespread use of Total Marrow Irradiation (TMI) and Total Marrow and Lymphoid Irradiation (TMLI) is the challenging difficulties in tumor target contouring workflow. This study aims to develop a hybrid neural network model that promotes accurate, automatic, and rapid segmentation of multi-class clinical target volumes. Materials and methods: Patients who underwent TMI and TMLI from January 2018 to May 2022 were included. Two independent oncologists manually contoured eight target volumes for patients on CT images. A novel DualEncoder Alignment Network (DEA-Net) was developed and trained using 46 patients from one internal institution and independently evaluated on a total of 39 internal and external patients. Performance was evaluated on accuracy metrics and delineation time. Results: The DEA-Net achieved a mean dice similarity coefficient of 90.1 % +/- 1.8 % for internal testing dataset (23 patients) and 91.1 % +/- 2.5 % for external testing dataset (16 patients). The 95 % Hausdorff distance and average symmetric surface distance were 2.04 +/- 0.62 mm and 0.57 +/- 0.11 mm for internal testing dataset, and 2.17 +/- 0.68 mm, and 0.57 +/- 0.20 mm for external testing dataset, respectively, outperforming most of existing state -of -the -art methods. In addition, the automatic segmentation workflow reduced delineation time by 98 % compared to the conventional manual contouring process (mean 173 +/- 29 s vs. 12168 +/- 1690 s; P < 0.001). Ablation study validate the effectiveness of hybrid structures. Conclusion: The proposed deep learning framework achieved comparable or superior target volume delineation accuracy, significantly accelerating the radiotherapy planning process.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Human-Computer Interaction in Radiotherapy Target Volume Delineation: A Prospective, Multi-institutional Comparison of User Input Devices
    Rasch, Coen R. N.
    Duppen, Joop C.
    Steenbakkers, Roel J.
    Baseman, Daniel
    Eng, Tony Y.
    Fuller, Clifton D.
    Harris, Anna M.
    Jones, William E., III
    Li, Ying
    Maani, Elizabeth
    Nguyen, Dominic D.
    Swanson, Gregory P.
    Bicquart, Celine
    Gagnon, Patrick
    Holland, John
    McDonald, Tasha
    Thomas, Charles R., Jr.
    Wang, Samuel J.
    Fuss, Martin
    Sharp, Hadley J.
    Ludwig, Michelle
    Rosenthal, David I.
    Diaz, Aidnag Z.
    Demandante, Carlo G. N.
    Shapiro, Ronald
    JOURNAL OF DIGITAL IMAGING, 2011, 24 (05) : 794 - 803
  • [22] Uncertainties of target volume delineation in MRI guided adaptive brachytherapy of cervix cancer: A multi-institutional study
    Petric, Primoz
    Hudej, Robert
    Rogelj, Peter
    Blas, Mateja
    Tanderup, Karl
    Fidarova, Elena
    Kirisits, Christian
    Berger, Daniel
    Dimopoulos, Johannes Carl Athanasios
    Poetter, Richard
    Hellebust, Taran Paulsen
    RADIOTHERAPY AND ONCOLOGY, 2013, 107 (01) : 6 - 12
  • [23] Automatic lymph node clinical target volumes delineation for NPC radiotherapy: A multi-center study
    Liao, Wenjun
    Luo, Xiangde
    Zhang, Shichuan
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S2989 - S2990
  • [24] Combining Single-Organ Deep Learning Segmentation Models for Total Marrow Irradiation
    Crespi, L.
    Roncaglioni, P.
    Dei, D.
    Lambri, N.
    Mancosu, P.
    Loiacono, D.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S280 - S281
  • [25] Significance of Hypofractionated Radiotherapy in Postoperative Irradiation for Breast Cancer: An Asian Multi-institutional Prospective Study
    Okonogi, N.
    Kono, S.
    Karasawa, K.
    Banu, P. A.
    Xu, X.
    Erawati, D.
    Adylkhanov, T.
    Jang, W. I.
    Yadamsuren, E.
    Calaguas, M. J.
    Thephamongkhol, K.
    Dung, T. A.
    Ng, W. N. P.
    Kato, S.
    CLINICAL ONCOLOGY, 2023, 35 (07) : 463 - 471
  • [26] Factors associated with successful electrolarynx use after total laryngectomy, a multi-institutional study
    Pan, Cassie
    Andrews, Leah I. B.
    Johnson, Emily
    Bhatt, Neel K.
    Rizvi, Zain H.
    LARYNGOSCOPE INVESTIGATIVE OTOLARYNGOLOGY, 2024, 9 (01):
  • [27] Inter-observer variability of clinical target volume delineation in radiotherapy treatment of pancreatic cancer: a multi-institutional contouring experience
    Caravatta, Luciana
    Macchia, Gabriella
    Mattiucci, Gian Carlo
    Sainato, Aldo
    Cernusco, Nunzia L. V.
    Mantello, Giovanna
    Di Tommaso, Monica
    Trignani, Marianna
    De Paoli, Antonino
    Boz, Gianni
    Friso, Maria L.
    Fusco, Vincenzo
    Di Nicola, Marta
    Morganti, Alessio G.
    Genovesi, Domenico
    RADIATION ONCOLOGY, 2014, 9
  • [28] Inter-observer variability of clinical target volume delineation in radiotherapy treatment of pancreatic cancer: a multi-institutional contouring experience
    Luciana Caravatta
    Gabriella Macchia
    Gian Carlo Mattiucci
    Aldo Sainato
    Nunzia LV Cernusco
    Giovanna Mantello
    Monica Di Tommaso
    Marianna Trignani
    Antonino De Paoli
    Gianni Boz
    Maria L Friso
    Vincenzo Fusco
    Marta Di Nicola
    Alessio G Morganti
    Domenico Genovesi
    Radiation Oncology, 9
  • [29] Geometric and Dosimetric Evaluation of Deep Learning-Based Automatic Delineation on CBCT-Synthesized CT and Planning CT for Breast Cancer Adaptive Radiotherapy: A Multi-Institutional Study
    Dai, Zhenhui
    Zhang, Yiwen
    Zhu, Lin
    Tan, Junwen
    Yang, Geng
    Zhang, Bailin
    Cai, Chunya
    Jin, Huaizhi
    Meng, Haoyu
    Tan, Xiang
    Jian, Wanwei
    Yang, Wei
    Wang, Xuetao
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [30] Dosimetric Evaluation of Targets and Organs at Risk in Dose Escalation Study for Total Marrow and Lymphoid Irradiation
    Takizawa, T.
    Kito, S.
    Ogawa, H.
    Nemoto, H.
    Taguchi, K.
    Suda, Y.
    Yasui, K.
    Arai, Y.
    Watanabe, S.
    Najima, Y.
    Doki, N.
    Murofushi, K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E724 - E724