Deep learning promoted target volumes delineation of total marrow and total lymphoid irradiation for accelerated radiotherapy: A multi-institutional study

被引:0
|
作者
Xue, Xudong [1 ,2 ]
Shi, Jun [3 ]
Zeng, Hui [4 ,5 ]
Yan, Bing [2 ]
Liu, Lei [2 ]
Jiang, Dazhen [6 ]
Wang, Xiaoyong [6 ]
Liu, Hui [6 ]
Jiang, Man [7 ]
Shen, Jianjun [2 ]
An, Hong [3 ]
Liu, An [8 ]
机构
[1] Huazhong Univ Sci & Technol, Hubei Canc Hosp, Tongji Med Coll, Dept Radiat Oncol, Wuhan 430079, Peoples R China
[2] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Radiat Oncol, Div Life Sci & Med, Hefei 230001, Peoples R China
[3] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China
[4] Jianghan Univ, Wuhan Hosp 6, Dept Radiotherapy & Oncol, Wuhan 430015, Peoples R China
[5] Jianghan Univ, Affiliated Hosp, Wuhan 430015, Peoples R China
[6] Wuhan Univ, Zhongnan Hosp, Hubei Canc Clin Study Ctr, Hubei Key Lab Tumor Biol Behav,Dept Radiat & Med O, Wuhan 430071, Peoples R China
[7] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept Nucl Engn & Technol, Wuhan 430000, Peoples R China
[8] City Hope Med Ctr, Dept Radiat Oncol, Duarte, CA 91010 USA
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2024年 / 123卷
关键词
TMI; TMLI; Auto-segmentation; Deep learning; TOTAL-BODY IRRADIATION; HELICAL TOMOTHERAPY; RANDOMIZED-TRIAL; TRANSPLANTATION; CYCLOPHOSPHAMIDE; SEGMENTATION; FEASIBILITY; LEUKEMIA; BUSULFAN; CHILDREN;
D O I
10.1016/j.ejmp.2024.103393
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background and purpose: One of the current roadblocks to the widespread use of Total Marrow Irradiation (TMI) and Total Marrow and Lymphoid Irradiation (TMLI) is the challenging difficulties in tumor target contouring workflow. This study aims to develop a hybrid neural network model that promotes accurate, automatic, and rapid segmentation of multi-class clinical target volumes. Materials and methods: Patients who underwent TMI and TMLI from January 2018 to May 2022 were included. Two independent oncologists manually contoured eight target volumes for patients on CT images. A novel DualEncoder Alignment Network (DEA-Net) was developed and trained using 46 patients from one internal institution and independently evaluated on a total of 39 internal and external patients. Performance was evaluated on accuracy metrics and delineation time. Results: The DEA-Net achieved a mean dice similarity coefficient of 90.1 % +/- 1.8 % for internal testing dataset (23 patients) and 91.1 % +/- 2.5 % for external testing dataset (16 patients). The 95 % Hausdorff distance and average symmetric surface distance were 2.04 +/- 0.62 mm and 0.57 +/- 0.11 mm for internal testing dataset, and 2.17 +/- 0.68 mm, and 0.57 +/- 0.20 mm for external testing dataset, respectively, outperforming most of existing state -of -the -art methods. In addition, the automatic segmentation workflow reduced delineation time by 98 % compared to the conventional manual contouring process (mean 173 +/- 29 s vs. 12168 +/- 1690 s; P < 0.001). Ablation study validate the effectiveness of hybrid structures. Conclusion: The proposed deep learning framework achieved comparable or superior target volume delineation accuracy, significantly accelerating the radiotherapy planning process.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Predicting Optimal Plan Dose Distributions of Total Marrow Irradiation Using Deep Learning Model
    Du, D.
    Neylon, J.
    Wong, J.
    Liu, A.
    MEDICAL PHYSICS, 2020, 47 (06) : E473 - E473
  • [32] Deep learning-based optimization of field geometry for total marrow irradiation delivered with VMAT
    Lambri, Nicola
    Longari, Giorgio
    Bianchi, Monica
    Bresolin, Andrea
    Buzzi, Simone
    Dei, Damiano
    Gallo, Pasqualina
    La Fauci, Francesco
    Lobefalo, Francesca
    Paganini, Lucia
    Parabicoli, Sara
    Pelizzoli, Marco
    Reggiori, Giacomo
    Tomatis, Stefano
    Zaccone, Caterina
    Scorsetti, Marta
    Loiacono, Daniele
    Mancosu, Pietro
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4440 - S4443
  • [33] Duhamel Versus Swenson Pull-Through for Total Colonic Aganglionosis: A Multi-Institutional Study
    Halaweish, Ihab
    Srinivas, Shruthi
    Farooqui, Zishaan
    Sutthatarn, Pattamon
    Campbell, Drayson
    Frischer, Jason
    Wood, Richard J.
    Langer, Jacob C.
    JOURNAL OF PEDIATRIC SURGERY, 2024, 59 (02) : 216 - 219
  • [34] Outcomes of Subtotal Parathyroidectomy Versus Total Parathyroidectomy With Autotransplantation for Tertiary Hyperparathyroidism Multi-institutional Study
    Choi, Hye Ryeon
    Aboueisha, Mohamed A.
    Attia, Abdallah S.
    Omar, Mahmoud
    ELnahla, Ahmad
    Toraih, Eman A.
    Shama, Mohamed
    Chung, Woong Youn
    Jeong, Jong Ju
    Kandil, Emad
    ANNALS OF SURGERY, 2021, 274 (04) : 674 - 679
  • [35] Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study
    Quon, J. L.
    Bala, W.
    Chen, L. C.
    Wright, J.
    Kim, L. H.
    Han, M.
    Shpanskaya, K.
    Lee, E. H.
    Tong, E.
    Iv, M.
    Seekins, J.
    Lungren, M. P.
    Braun, K. R. M.
    Poussaint, T. Y.
    Laughlin, S.
    Taylor, M. D.
    Lober, R. M.
    Vogel, H.
    Fisher, P. G.
    Grant, G. A.
    Ramaswamy, V.
    Vitanza, N. A.
    Ho, C. Y.
    Edwards, M. S. B.
    Cheshier, S. H.
    Yeom, K. W.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2020, 41 (09) : 1718 - 1725
  • [36] A Multi-Institutional Feasibility Study of a Novel Cloud-Based and GPU-Accelerated ClinicalWorkflow for Adaptive Radiotherapy
    Santhanam, A.
    Cao, M.
    Potrebko, P.
    Elliott, D.
    Lauria, M.
    Seshan, S.
    Bosley, R.
    Low, D.
    MEDICAL PHYSICS, 2019, 46 (06) : E435 - E436
  • [37] External beam radiotherapy target volumes for cervical cancer: A multi-institutional study assessing contouring variability on magnetic resonance imaging (MRI) and computer tomography (CT)
    Veera, J.
    Vinod, S. K.
    Holloway, L. C.
    Borok, N.
    Dimigen, M.
    Pogson, E.
    Lim, K.
    EUROPEAN JOURNAL OF CANCER, 2013, 49 : S240 - S240
  • [38] Re-irradiation for oligo-recurrence from esophageal cancer with radiotherapy history: a multi-institutional study
    Keiichi Jingu
    Yuzuru Niibe
    Hideomi Yamashita
    Kuniaki Katsui
    Toshihiko Matsumoto
    Tomohiro Nishina
    Atsuro Terahara
    Radiation Oncology, 12
  • [39] Re-irradiation for oligo-recurrence from esophageal cancer with radiotherapy history: a multi-institutional study
    Jingu, Keiichi
    Niibe, Yuzuru
    Yamashita, Hideomi
    Katsui, Kuniaki
    Matsumoto, Toshihiko
    Nishina, Tomohiro
    Terahara, Atsuro
    RADIATION ONCOLOGY, 2017, 12
  • [40] Validation of ESTRO and RTOG guidelines on target volume delineation for elective radiotherapy of breast cancer: multi-institutional retrospective study of Korean Radiation Oncology Group (KROG 1507)
    Kim, Y. B.
    Chun, M.
    Shin, K. Hwan
    Park, W.
    Lee, J. H.
    Kim, J. H.
    Yoon, W. S.
    Lee, I. J.
    Kim, J.
    Park, H. L.
    BREAST, 2017, 32 : S73 - S74