Nomogram for predicting difficult total laparoscopic hysterectomy: a multi-institutional, retrospective model development and validation study

被引:0
|
作者
Chen, Yin [1 ]
Jiang, Jiahong [1 ]
He, Min [1 ]
Zhong, Kuiyan [2 ]
Tang, Shuai [2 ]
Deng, Li [2 ]
Wang, Yanzhou [2 ]
机构
[1] Army Med Univ, Army Hosp Chinese Peoples Liberat Army 958, Hosp 958, Dept Obstet & Gynecol, Chongqing, Peoples R China
[2] Army Med Univ, Affiliated Hosp 1, Southwest Hosp, Dept Obstet & Gynecol, Chongqing 400038, Peoples R China
关键词
nomogram; operative difficulty; prediction model; surgery; total laparoscopic hysterectomy (TLH); SURGICAL DIFFICULTY; COMPLICATIONS; CANCER; UTERUS;
D O I
10.1097/JS9.0000000000001406
中图分类号
R61 [外科手术学];
学科分类号
摘要
Background:Total laparoscopic hysterectomy (TLH) is the most commonly performed gynaecological surgery. However, the difficulty of the operation varies depending on the patient and surgeon. Subsequently, patient's outcomes and surgical efficiency are affected. The authors aimed to develop and validate a preoperative nomogram to predict the operative difficulty in patients undergoing TLH.Methods:This retrospective study included 663 patients with TLH from Southwest Hospital and 102 patients from 958th Hospital in Chongqing, China. A multivariate logistic regression analysis was used to identify the independent predictors of operative difficulty, and a nomogram was constructed. The performance of the nomogram was validated internally and externally.Results:The uterine weight, history of pelvic surgery, presence of adenomyosis, surgeon's years of practice, and annual hysterectomy volume were identified as significant independent predictors of operative difficulty. The nomogram demonstrated good discrimination in the training dataset [area under the receiver operating characteristic curve (AUC), 0.827 (95% CI, 0.783-0.872], internal validation dataset [AUC, 0.793 (95% CI, 0.714-0.872)], and external validation dataset [AUC, 0.756 [95% CI, 0.658-0.854)]. The calibration curves showed good agreement between the predictions and observations for both internal and external validations.Conclusion:The developed nomogram accurately predicted the operative difficulty of TLH, facilitated preoperative planning and patient counselling, and optimized surgical training. Further prospective multicenter clinical studies are required to optimize and validate this model.
引用
收藏
页码:3249 / 3257
页数:9
相关论文
共 50 条
  • [1] Thrombosis risk prediction in lymphoma patients: A multi-institutional, retrospective model development and validation study
    Ma, Shengling
    La, Jennifer
    Swinnerton, Kaitlin N.
    Guffey, Danielle
    Bandyo, Raka
    De Las Pozas, Giordana
    Hanzelka, Katy
    Xiao, Xiangjun
    Rojas-Hernandez, Cristhiam M.
    Amos, Christopher I.
    Chitalia, Vipul
    Ravid, Katya
    Merriman, Kelly W.
    Flowers, Christopher R.
    Fillmore, Nathanael
    Li, Ang
    AMERICAN JOURNAL OF HEMATOLOGY, 2024, 99 (07) : 1230 - 1239
  • [2] Multi-institutional Validation of a Vaginal Hysterectomy Simulation Model for Resident Training
    Zoorob, Dani
    Frenn, Recia
    Moffitt, Melissa
    Kansagor, Adam
    Cross, Stephanie
    Aguirre, Francisco
    Edelson, Mitchell I.
    Kenny, Bronwyn
    Banks, Erika
    JOURNAL OF MINIMALLY INVASIVE GYNECOLOGY, 2021, 28 (08) : 1490 - +
  • [3] Hysterectomy for cervical intraepithelial neoplasia: A retrospective observational multi-institutional study
    Ciavattini, Andrea
    Di Giuseppe, Jacopo
    Marconi, Chiara
    Giannella, Luca
    Delli Carpini, Giovanni
    Paolucci, Michela
    Fichera, Mariasole
    De Vincenzo, Rosa Pasqualina
    Scambia, Giovanni
    Evangelista, Maria Teresa
    Bogani, Giorgio
    Bertolina, Francesca
    Raspagliesi, Francesco
    Gardella, Barbara
    Spinillo, Arsenio
    Dominoni, Mattia
    Monti, Ermelinda
    Liverani, Carlo Antonio
    Vercellini, Paolo
    Iorio, Maria
    Vitobello, Domenico
    Portuesi, Rosalba
    Bresciani, Gianluigi
    Origoni, Massimo
    Cantatore, Francesco
    Pellegri, Antonio Maurizio
    Moriconi, Lorenzo
    Serri, Matteo
    Chiari, Andrea
    Sopracordevole, Francesco
    Barbero, Maggiorino
    Parazzini, Fabio
    INTERNATIONAL JOURNAL OF GYNECOLOGY & OBSTETRICS, 2022, 159 (03) : 679 - 688
  • [4] Nomogram for predicting difficult transoral and submental thyroidectomy: a retrospective model development and validation study with large-scale population
    Ling Zhan
    Bomin Guo
    Zixia Tao
    Xianzhao Deng
    Zheng Ding
    Bo Wu
    Zhili Yang
    Minggao Guo
    Xuanbin Tao
    Xiaohui Gu
    Youben Fan
    Surgical Endoscopy, 2025, 39 (5) : 3202 - 3214
  • [5] External validation of a multi-institutional retroperitoneal sarcoma nomogram
    Raut, Chandrajit P.
    Miceli, Rosalba
    Strauss, Dirk C.
    Swallow, Carol J.
    Hohenberger, Peter
    van Coevorden, Frits
    Rutkowski, Piotr
    Fiore, Marco
    Callegaro, Dario
    Casali, Paolo G.
    Haas, Rick L.
    Hayes, Andrew J.
    Honore, Charles
    Cannell, Amanda J.
    Jakob, Jens
    Szacht, Milena
    Fairweather, Mark
    Pollock, Raphael E.
    Bonvalot, Sylvie
    Gronchi, Alessandro
    CANCER, 2016, 122 (09) : 1417 - 1424
  • [6] Multi-institutional Development and External Validation of a Nomogram Predicting Recurrence After Curative Liver Resection for Neuroendocrine Liver Metastasis
    Xiang, Jun-Xi
    Zhang, Xu-Feng
    Weiss, Matthew
    Aldrighetti, Luca
    Poultsides, George A.
    Bauer, Todd W.
    Fields, Ryan C.
    Maithel, Shishir Kumar
    Marques, Hugo P.
    Pawlik, Timothy M.
    ANNALS OF SURGICAL ONCOLOGY, 2020, 27 (10) : 3717 - 3726
  • [7] Multi-institutional Development and External Validation of a Nomogram Predicting Recurrence After Curative Liver Resection for Neuroendocrine Liver Metastasis
    Jun-Xi Xiang
    Xu-Feng Zhang
    Matthew Weiss
    Luca Aldrighetti
    George A. Poultsides
    Todd W. Bauer
    Ryan C. Fields
    Shishir Kumar Maithel
    Hugo P. Marques
    Timothy M. Pawlik
    Annals of Surgical Oncology, 2020, 27 : 3717 - 3726
  • [8] Development and multi-institutional validation of a deep learning model for grading of vesicoureteral reflux on voiding cystourethrogram: a retrospective multicenter study
    Li, Zhanchi
    Tan, Zelong
    Wang, Zheyuan
    Tang, Wenjuan
    Ren, Xiang
    Fu, Jinhua
    Wang, Guangbing
    Chu, Han
    Chen, Jiarong
    Duan, Yuhe
    Zhuang, Likai
    Wu, Min
    ECLINICALMEDICINE, 2024, 69
  • [9] Colorado retinopathy of prematurity model: a multi-institutional validation study
    Cao, Jennifer H.
    Wagner, Brandie D.
    Cerda, Ashlee
    McCourt, Emily A.
    Palestine, Alan
    Enzenauer, Robert W.
    Braverman, Rebecca S.
    Wong, Ryan K.
    Tsui, Irena
    Gore, Charlotte
    Robbins, Shira L.
    Puente, Michael A., Jr.
    Kauffman, Levi
    Kong, Lingkun
    Morrison, David G.
    Lynch, Anne M.
    JOURNAL OF AAPOS, 2016, 20 (03): : 220 - 225
  • [10] A nomogram clinical prediction model for predicting urinary infection stones: development and validation in a retrospective study
    Shen, Jinhong
    Xiao, Zhiliang
    Wang, Xitao
    Zhao, Yan
    WORLD JOURNAL OF UROLOGY, 2024, 42 (01)