On the Parameterized Complexity of Compact Set Packing

被引:1
|
作者
Gadekar, Ameet [1 ]
机构
[1] Bar Ilan Univ, Dept Comp Sci, Ramat Gan, Israel
基金
欧洲研究理事会;
关键词
Parameterized complexity; Set packing; INDEPENDENT SETS; ALGORITHMS;
D O I
10.1007/s00453-024-01269-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Set Packing problem is, given a collection of sets S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} over a ground set U, to find a maximum collection of sets that are pairwise disjoint. The problem is among the most fundamental NP-hard optimization problems that have been studied extensively in various computational regimes. The focus of this work is on parameterized complexity, Parameterized Set Packing (PSP): Given parameter r is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \in {\mathbb N}$$\end{document}, is there a collection S 'subset of S:|S '|=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {S}' \subseteq \mathcal {S}: |\mathcal {S}'| = r$$\end{document} such that the sets in S '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}'$$\end{document} are pairwise disjoint? Unfortunately, the problem is not fixed parameter tractable unless W[1]=FPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {W[1]} = \textsf {FPT} $$\end{document}, and, in fact, an "enumerative" running time of |S|Omega(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}|<^>{\Omega (r)}$$\end{document} is required unless the exponential time hypothesis (ETH) fails. This paper is a quest for tractable instances of Set Packing from parameterized complexity perspectives. We say that the input (U,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({U},\mathcal {S})$$\end{document} is "compact" if |U|=f(r)<middle dot>poly(log|S|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = f(r)\cdot \textsf {poly} ( \log |\mathcal {S}|)$$\end{document}, for some f(r)>= r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(r) \ge r$$\end{document}. In the Compact PSP problem, we are given a compact instance of PSP. In this direction, we present a "dichotomy" result of PSP: When |U|=f(r)<middle dot>o(log|S|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = f(r)\cdot o(\log |\mathcal {S}|)$$\end{document}, PSP is in FPT, while for |U|=r<middle dot>Theta(log(|S|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = r\cdot \Theta (\log (|\mathcal {S}|))$$\end{document}, the problem is W[1]-hard; moreover, assuming ETH, Compact PSP does not admit |S|o(r/logr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}|<^>{o(r/\log r)}$$\end{document} time algorithm even when |U|=r<middle dot>Theta(log(|S|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = r\cdot \Theta (\log (|\mathcal {S}|))$$\end{document}. Although certain results in the literature imply hardness of compact versions of related problems such as Setr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Covering and Exactr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Covering, these constructions fail to extend to Compact PSP. A novel contribution of our work is the identification and construction of a gadget, which we call Compatible Intersecting Set System pair, that is crucial in obtaining the hardness result for Compact PSP. Finally, our framework can be extended to obtain improved running time lower bounds for Compactr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-VectorSum.
引用
收藏
页码:3579 / 3597
页数:19
相关论文
共 50 条
  • [1] Parameterized complexity of Strip Packing and Minimum Volume Packing
    Ashok, Pradeesha
    Kolay, Sudeshna
    Meesum, S. M.
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2017, 661 : 56 - 64
  • [2] Parameterized Complexity of (A, l)-Path Packing
    Belmonte, Remy
    Hanaka, Tesshu
    Kanzaki, Masaaki
    Kiyomi, Masashi
    Kobayashi, Yasuaki
    Kobayashi, Yusuke
    Lampis, Michael
    Ono, Hirotaka
    Otachi, Yota
    ALGORITHMICA, 2022, 84 (04) : 871 - 895
  • [3] Parameterized Complexity of (A, l)-Path Packing
    Belmonte, Remy
    Hanaka, Tesshu
    Kanzaki, Masaaki
    Kiyomi, Masashi
    Kobayashi, Yasuaki
    Kobayashi, Yusuke
    Lampis, Michael
    Ono, Hirotaka
    Otachi, Yota
    COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 : 43 - 55
  • [4] A faster parameterized algorithm for set packing
    Koutis, I
    INFORMATION PROCESSING LETTERS, 2005, 94 (01) : 7 - 9
  • [5] Parameterized complexity of safe set
    Belmonte R.
    Hanaka T.
    Katsikarelis I.
    Lampis M.
    Ono H.
    Otachi Y.
    Journal of Graph Algorithms and Applications, 2020, 24 (03) : 215 - 245
  • [6] Parameterized Complexity of Safe Set
    Belmonte, Rémy
    Hanaka, Tesshu
    Katsikarelis, Ioannis
    Lampis, Michael
    Ono, Hirotaka
    Otachi, Yota
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, 11485 LNCS : 38 - 49
  • [7] Parameterized Complexity of Geodetic Set
    Kellerhals L.
    Koana T.
    Journal of Graph Algorithms and Applications, 2022, 26 (04) : 401 - 419
  • [8] Parameterized complexity of safe set
    Belmonte, Rémy
    Hanaka, Tesshu
    Katsikarelis, Ioannis
    Lampis, Michael
    Ono, Hirotaka
    Otachi, Yota
    arXiv, 2019,
  • [9] The Parameterized Complexity of Cycle Packing: Indifference is Not an Issue
    Krithika, R.
    Sahu, Abhishek
    Saurabh, Saket
    Zehavi, Meirav
    ALGORITHMICA, 2019, 81 (09) : 3803 - 3841
  • [10] The Parameterized Complexity of Cycle Packing: Indifference is Not an Issue
    R. Krithika
    Abhishek Sahu
    Saket Saurabh
    Meirav Zehavi
    Algorithmica, 2019, 81 : 3803 - 3841