On the Parameterized Complexity of Compact Set Packing

被引:1
|
作者
Gadekar, Ameet [1 ]
机构
[1] Bar Ilan Univ, Dept Comp Sci, Ramat Gan, Israel
基金
欧洲研究理事会;
关键词
Parameterized complexity; Set packing; INDEPENDENT SETS; ALGORITHMS;
D O I
10.1007/s00453-024-01269-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Set Packing problem is, given a collection of sets S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} over a ground set U, to find a maximum collection of sets that are pairwise disjoint. The problem is among the most fundamental NP-hard optimization problems that have been studied extensively in various computational regimes. The focus of this work is on parameterized complexity, Parameterized Set Packing (PSP): Given parameter r is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \in {\mathbb N}$$\end{document}, is there a collection S 'subset of S:|S '|=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {S}' \subseteq \mathcal {S}: |\mathcal {S}'| = r$$\end{document} such that the sets in S '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}'$$\end{document} are pairwise disjoint? Unfortunately, the problem is not fixed parameter tractable unless W[1]=FPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {W[1]} = \textsf {FPT} $$\end{document}, and, in fact, an "enumerative" running time of |S|Omega(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}|<^>{\Omega (r)}$$\end{document} is required unless the exponential time hypothesis (ETH) fails. This paper is a quest for tractable instances of Set Packing from parameterized complexity perspectives. We say that the input (U,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({U},\mathcal {S})$$\end{document} is "compact" if |U|=f(r)<middle dot>poly(log|S|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = f(r)\cdot \textsf {poly} ( \log |\mathcal {S}|)$$\end{document}, for some f(r)>= r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(r) \ge r$$\end{document}. In the Compact PSP problem, we are given a compact instance of PSP. In this direction, we present a "dichotomy" result of PSP: When |U|=f(r)<middle dot>o(log|S|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = f(r)\cdot o(\log |\mathcal {S}|)$$\end{document}, PSP is in FPT, while for |U|=r<middle dot>Theta(log(|S|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = r\cdot \Theta (\log (|\mathcal {S}|))$$\end{document}, the problem is W[1]-hard; moreover, assuming ETH, Compact PSP does not admit |S|o(r/logr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}|<^>{o(r/\log r)}$$\end{document} time algorithm even when |U|=r<middle dot>Theta(log(|S|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = r\cdot \Theta (\log (|\mathcal {S}|))$$\end{document}. Although certain results in the literature imply hardness of compact versions of related problems such as Setr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Covering and Exactr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Covering, these constructions fail to extend to Compact PSP. A novel contribution of our work is the identification and construction of a gadget, which we call Compatible Intersecting Set System pair, that is crucial in obtaining the hardness result for Compact PSP. Finally, our framework can be extended to obtain improved running time lower bounds for Compactr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-VectorSum.
引用
收藏
页码:3579 / 3597
页数:19
相关论文
共 50 条
  • [41] On the parameterized complexity of d-dimensional point set pattern matching
    Cabello, Sergio
    Giannopoulos, Panos
    Knauer, Christian
    INFORMATION PROCESSING LETTERS, 2007, 105 (02) : 73 - 77
  • [42] Parameterized complexity of dominating set variants in almost cluster and split graphs
    Goyal, Dishant
    Jacob, Ashwin
    Kumar, Kaushtubh
    Majumdar, Diptapriyo
    Raman, Venkatesh
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2025, 150
  • [43] Computational complexity analysis of set-bin-packing problem
    Izumi, T
    Yokomaru, T
    Takahashi, A
    Kajitani, Y
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : E244 - E247
  • [44] Computational complexity analysis of Set-Bin-Packing problem
    Izumi, T
    Yokomaru, T
    Takahashi, A
    Kajitani, Y
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (05) : 842 - 849
  • [45] On Counting Parameterized Matching and Packing
    Liu, Yunlong
    Wang, Jianxin
    FRONTIERS IN ALGORITHMICS, FAW 2016, 2016, 9711 : 125 - 134
  • [46] Parameterized complexity and inapproximability of dominating set problem in chordal and near chordal graphs
    Chunmei Liu
    Yinglei Song
    Journal of Combinatorial Optimization, 2011, 22 : 684 - 698
  • [47] Parameterized complexity and inapproximability of dominating set problem in chordal and near chordal graphs
    Liu, Chunmei
    Song, Yinglei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (04) : 684 - 698
  • [48] An O*(3.533k)-time parameterized algorithm for the 3-set packing problem
    Wang, Jianxin
    Feng, Qilong
    Chen, Jianer
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (18) : 1745 - 1753
  • [49] Parameterized complexity of firefighting
    Bazgan, Cristina
    Chopin, Morgan
    Cygan, Marek
    Fellows, Michael R.
    Fomin, Fedor V.
    van Leeuwen, Erik Jan
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2014, 80 (07) : 1285 - 1297
  • [50] Parameterized parallel complexity
    Cesati, M
    Di Ianni, M
    EURO-PAR '98 PARALLEL PROCESSING, 1998, 1470 : 892 - 896