On the Parameterized Complexity of Compact Set Packing

被引:1
|
作者
Gadekar, Ameet [1 ]
机构
[1] Bar Ilan Univ, Dept Comp Sci, Ramat Gan, Israel
基金
欧洲研究理事会;
关键词
Parameterized complexity; Set packing; INDEPENDENT SETS; ALGORITHMS;
D O I
10.1007/s00453-024-01269-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Set Packing problem is, given a collection of sets S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} over a ground set U, to find a maximum collection of sets that are pairwise disjoint. The problem is among the most fundamental NP-hard optimization problems that have been studied extensively in various computational regimes. The focus of this work is on parameterized complexity, Parameterized Set Packing (PSP): Given parameter r is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \in {\mathbb N}$$\end{document}, is there a collection S 'subset of S:|S '|=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {S}' \subseteq \mathcal {S}: |\mathcal {S}'| = r$$\end{document} such that the sets in S '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}'$$\end{document} are pairwise disjoint? Unfortunately, the problem is not fixed parameter tractable unless W[1]=FPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {W[1]} = \textsf {FPT} $$\end{document}, and, in fact, an "enumerative" running time of |S|Omega(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}|<^>{\Omega (r)}$$\end{document} is required unless the exponential time hypothesis (ETH) fails. This paper is a quest for tractable instances of Set Packing from parameterized complexity perspectives. We say that the input (U,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({U},\mathcal {S})$$\end{document} is "compact" if |U|=f(r)<middle dot>poly(log|S|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = f(r)\cdot \textsf {poly} ( \log |\mathcal {S}|)$$\end{document}, for some f(r)>= r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(r) \ge r$$\end{document}. In the Compact PSP problem, we are given a compact instance of PSP. In this direction, we present a "dichotomy" result of PSP: When |U|=f(r)<middle dot>o(log|S|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = f(r)\cdot o(\log |\mathcal {S}|)$$\end{document}, PSP is in FPT, while for |U|=r<middle dot>Theta(log(|S|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = r\cdot \Theta (\log (|\mathcal {S}|))$$\end{document}, the problem is W[1]-hard; moreover, assuming ETH, Compact PSP does not admit |S|o(r/logr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}|<^>{o(r/\log r)}$$\end{document} time algorithm even when |U|=r<middle dot>Theta(log(|S|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = r\cdot \Theta (\log (|\mathcal {S}|))$$\end{document}. Although certain results in the literature imply hardness of compact versions of related problems such as Setr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Covering and Exactr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Covering, these constructions fail to extend to Compact PSP. A novel contribution of our work is the identification and construction of a gadget, which we call Compatible Intersecting Set System pair, that is crucial in obtaining the hardness result for Compact PSP. Finally, our framework can be extended to obtain improved running time lower bounds for Compactr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-VectorSum.
引用
收藏
页码:3579 / 3597
页数:19
相关论文
共 50 条
  • [31] On the complexity of approximating k-set packing
    Hazan, E
    Safra, S
    Schwartz, O
    COMPUTATIONAL COMPLEXITY, 2006, 15 (01) : 20 - 39
  • [32] On the complexity of approximating k-set packing
    Elad Hazan
    Shmuel Safra
    Oded Schwartz
    computational complexity, 2006, 15 : 20 - 39
  • [33] The Parameterized Complexity of Dominating Set and Friends Revisited for Structured Graphs
    Misra, Neeldhara
    Rathi, Piyush
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2019, 11532 : 299 - 310
  • [34] Parameterized Complexity of Independent Set in H-Free Graphs
    Bonnet, Edouard
    Bousquet, Nicolas
    Charbit, Pierre
    Thomasse, Stephan
    Watrigant, Remi
    ALGORITHMICA, 2020, 82 (08) : 2360 - 2394
  • [35] Parameterized Complexity of Independent Set in H-Free Graphs
    Édouard Bonnet
    Nicolas Bousquet
    Pierre Charbit
    Stéphan Thomassé
    Rémi Watrigant
    Algorithmica, 2020, 82 : 2360 - 2394
  • [36] An O*(3.523k) parameterized algorithm for 3-set packing
    Wang, Jianxin
    Feng, Qilong
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2008, 4978 : 82 - 93
  • [37] On the parameterized complexity of d-dimensional point set pattern matching
    Cabello, Sergio
    Giannopoulos, Panos
    Knauer, Christian
    PARAMETERIZED AND EXACT COMPUTATION,PROCEEDINGS, 2006, 4169 : 175 - 183
  • [38] Parameterized dominating set problem in chordal graphs: complexity and lower bound
    Liu, Chunmei
    Song, Yinglei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 18 (01) : 87 - 97
  • [39] Parameterized dominating set problem in chordal graphs: complexity and lower bound
    Chunmei Liu
    Yinglei Song
    Journal of Combinatorial Optimization, 2009, 18 : 87 - 97
  • [40] On the parameterized complexity of SPARSEST CUT and SMALL-SET EXPANSION problems
    Javadi, Ramin
    Nikabadi, Amir
    DISCRETE APPLIED MATHEMATICS, 2024, 355 : 1 - 12