On the Parameterized Complexity of Compact Set Packing

被引:1
|
作者
Gadekar, Ameet [1 ]
机构
[1] Bar Ilan Univ, Dept Comp Sci, Ramat Gan, Israel
基金
欧洲研究理事会;
关键词
Parameterized complexity; Set packing; INDEPENDENT SETS; ALGORITHMS;
D O I
10.1007/s00453-024-01269-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Set Packing problem is, given a collection of sets S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} over a ground set U, to find a maximum collection of sets that are pairwise disjoint. The problem is among the most fundamental NP-hard optimization problems that have been studied extensively in various computational regimes. The focus of this work is on parameterized complexity, Parameterized Set Packing (PSP): Given parameter r is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \in {\mathbb N}$$\end{document}, is there a collection S 'subset of S:|S '|=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {S}' \subseteq \mathcal {S}: |\mathcal {S}'| = r$$\end{document} such that the sets in S '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}'$$\end{document} are pairwise disjoint? Unfortunately, the problem is not fixed parameter tractable unless W[1]=FPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {W[1]} = \textsf {FPT} $$\end{document}, and, in fact, an "enumerative" running time of |S|Omega(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}|<^>{\Omega (r)}$$\end{document} is required unless the exponential time hypothesis (ETH) fails. This paper is a quest for tractable instances of Set Packing from parameterized complexity perspectives. We say that the input (U,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({U},\mathcal {S})$$\end{document} is "compact" if |U|=f(r)<middle dot>poly(log|S|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = f(r)\cdot \textsf {poly} ( \log |\mathcal {S}|)$$\end{document}, for some f(r)>= r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(r) \ge r$$\end{document}. In the Compact PSP problem, we are given a compact instance of PSP. In this direction, we present a "dichotomy" result of PSP: When |U|=f(r)<middle dot>o(log|S|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = f(r)\cdot o(\log |\mathcal {S}|)$$\end{document}, PSP is in FPT, while for |U|=r<middle dot>Theta(log(|S|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = r\cdot \Theta (\log (|\mathcal {S}|))$$\end{document}, the problem is W[1]-hard; moreover, assuming ETH, Compact PSP does not admit |S|o(r/logr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathcal {S}|<^>{o(r/\log r)}$$\end{document} time algorithm even when |U|=r<middle dot>Theta(log(|S|))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|{U}| = r\cdot \Theta (\log (|\mathcal {S}|))$$\end{document}. Although certain results in the literature imply hardness of compact versions of related problems such as Setr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Covering and Exactr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Covering, these constructions fail to extend to Compact PSP. A novel contribution of our work is the identification and construction of a gadget, which we call Compatible Intersecting Set System pair, that is crucial in obtaining the hardness result for Compact PSP. Finally, our framework can be extended to obtain improved running time lower bounds for Compactr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-VectorSum.
引用
收藏
页码:3579 / 3597
页数:19
相关论文
共 50 条
  • [21] The Robust Set Problem: Parameterized Complexity and Approximation
    Bazgan, Cristina
    Chopin, Morgan
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 136 - 147
  • [22] Improved parameterized algorithms for weighted 3-set packing
    Wang, Jianxin
    Feng, Qilong
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2008, 5092 : 130 - 139
  • [23] Parameterized complexity of fair feedback vertex set problem
    Kanesh, Lawqueen
    Maity, Soumen
    Muluk, Komal
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2021, 867 : 1 - 12
  • [24] Parameterized Complexity of Conflict-Free Set Cover
    Jacob, Ashwin
    Majumdar, Diptapriyo
    Raman, Venkatesh
    THEORY OF COMPUTING SYSTEMS, 2021, 65 (03) : 515 - 540
  • [25] Parameterized Complexity of Conflict-Free Set Cover
    Ashwin Jacob
    Diptapriyo Majumdar
    Venkatesh Raman
    Theory of Computing Systems, 2021, 65 : 515 - 540
  • [26] Parameterized complexity of directed feedback set problems in tournaments
    Raman, V
    Saurabh, S
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2003, 2748 : 484 - 492
  • [27] Parameterized Complexity of Conflict-Free Set Cover
    Jacob, Ashwin
    Majumdar, Diptapriyo
    Raman, Venkatesh
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2019, 11532 : 191 - 202
  • [28] Parameterized Complexity of d-Hitting Set with Quotas
    Gupta, Sushmita
    Jain, Pallavi
    Petety, Aditya
    Singh, Sagar
    SOFSEM 2021: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2021, 12607 : 293 - 307
  • [29] Parameterized extension complexity of independent set and related problems
    Gajarsky, Jakub
    Hlineny, Petr
    Tiwary, Hans Raj
    DISCRETE APPLIED MATHEMATICS, 2018, 248 : 56 - 67
  • [30] The communication complexity of approximate set packing and covering
    Nisan, N
    AUTOMATA, LANGUAGES AND PROGRAMMING, 2002, 2380 : 868 - 875