The Parameterized Complexity of Cycle Packing: Indifference is Not an Issue

被引:1
|
作者
Krithika, R. [1 ]
Sahu, Abhishek [2 ]
Saurabh, Saket [2 ,3 ]
Zehavi, Meirav [4 ]
机构
[1] Indian Inst Technol, Palakkad, India
[2] HBNI, Inst Math Sci, Chennai, Tamil Nadu, India
[3] Univ Bergen, Bergen, Norway
[4] Ben Gurion Univ Negev, Beer Sheva, Israel
关键词
Cycle packing; Proper interval deletion set; Fixed-parameter tractable; KERNEL BOUNDS; VERTEX;
D O I
10.1007/s00453-019-00599-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In the Cycle Packing problem, we are given an undirected graph G, a positive integer r, and the task is to check whether there exist r vertex-disjoint cycles. In this paper, we study Cycle Packing with respect to a structural parameter, namely, distance to proper interval graphs (indifference graphs). In particular, we show that Cycle Packing is fixed-parameter tractable (FPT) when parameterized by t, the size of a proper interval deletion set. For this purpose, we design an algorithm with running time. Bodlaender et al. (Theor Comput Sci 511:117-136, 2013) studied several structural parameterizations for Cycle Packing and our FPT algorithm fills a gap in their ecology of parameterizations. We combine color coding, greedy strategy and dynamic programming based on structural properties of proper interval graphs in a non-trivial fashion to obtain the FPT algorithm. Our belief is that this approach is quite general and can be useful in solving many other problems with the same parameterization.
引用
收藏
页码:3803 / 3841
页数:39
相关论文
共 50 条
  • [1] The Parameterized Complexity of Cycle Packing: Indifference is Not an Issue
    R. Krithika
    Abhishek Sahu
    Saket Saurabh
    Meirav Zehavi
    Algorithmica, 2019, 81 : 3803 - 3841
  • [2] The Parameterized Complexity of Cycle Packing: Indifference is Not an Issue
    Krithika, R.
    Sahu, Abhishek
    Saurabh, Saket
    Zehavi, Meirav
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 712 - 726
  • [3] Parameterized complexity of Strip Packing and Minimum Volume Packing
    Ashok, Pradeesha
    Kolay, Sudeshna
    Meesum, S. M.
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2017, 661 : 56 - 64
  • [4] Parameterized Complexity of (A, l)-Path Packing
    Belmonte, Remy
    Hanaka, Tesshu
    Kanzaki, Masaaki
    Kiyomi, Masashi
    Kobayashi, Yasuaki
    Kobayashi, Yusuke
    Lampis, Michael
    Ono, Hirotaka
    Otachi, Yota
    ALGORITHMICA, 2022, 84 (04) : 871 - 895
  • [5] Parameterized Complexity of (A, l)-Path Packing
    Belmonte, Remy
    Hanaka, Tesshu
    Kanzaki, Masaaki
    Kiyomi, Masashi
    Kobayashi, Yasuaki
    Kobayashi, Yusuke
    Lampis, Michael
    Ono, Hirotaka
    Otachi, Yota
    COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 : 43 - 55
  • [6] On the Parameterized Complexity of Compact Set Packing
    Gadekar, Ameet
    ALGORITHMICA, 2024, 86 (11) : 3579 - 3597
  • [8] Guest Editorial: Special Issue on Parameterized Complexity
    Cai, Liming
    Kanj, Iyad
    Rosamond, Frances A.
    TSINGHUA SCIENCE AND TECHNOLOGY, 2014, 19 (04) : 323 - 324
  • [9] Guest Editorial: Special Issue on Parameterized Complexity
    Liming Cai
    Iyad Kanj
    Frances A.Rosamond
    Tsinghua Science and Technology, 2014, 19 (04) : 323 - 324
  • [10] Special Issue on Parameterized Complexity of Discrete Optimization Preface
    Fellows, Michael R.
    Fomin, Fedor V.
    Gutin, Gregory
    DISCRETE OPTIMIZATION, 2011, 8 (01) : 1 - 1