Deep Image Prior for Spatio-temporal Fluorescence Microscopy Images DECO-DIP

被引:0
|
作者
Meyer, Lina [1 ,2 ,3 ]
Woelk, Lena-Marie [1 ,2 ,3 ]
Gee, Christine E. [4 ]
Lohr, Christian [5 ]
Kannabiran, Sukanya A. [6 ]
Diercks, Bjoern-Philipp [6 ]
Werner, Rene [1 ,2 ,3 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf UKE, Inst Appl Med Informat, Hamburg, Germany
[2] UKE, Dept Computat Neurosci, Hamburg, Germany
[3] UKE, Ctr Biomed Artificial Intelligence bAIome, Hamburg, Germany
[4] UKE, Inst Synapt Physiol, Hamburg, Germany
[5] Univ Hamburg, Inst Zool, Div Neurophysiol, Hamburg, Germany
[6] UKE, Dept Biochem & Mol Cell Biol, Hamburg, Germany
关键词
D O I
10.1007/978-3-658-44037-4_82
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Image deconvolution and denoising is a common postprocessing step to improve the quality of biomedical fluorescence microscopy images. In recent years, this task has been increasingly tackled with the help of supervised deep learning methods. However, generating a large number of training pairs is, if at all possible, often laborious. Here, we present a new deep learning algorithm called DECO-DIP that builds on the Deep Image Prior (DIP) framework and does not rely on training data. We extend DIP by incorporating a novel loss function that, in addition to a standard L-2 data term, contains a term to model the underlying image generation forward model. We apply our framework both to synthetic data and Ca2+ microscopy data of biological samples, namely Jurkat T-cells and astrocytes. DECO-DIP outperforms both classical deconvolution and the standard DIP implementation. We further introduce an extension, DECO-DIP-T, which explicitly utilizes the time dependence in live cell microscopy image series.
引用
收藏
页码:322 / 327
页数:6
相关论文
共 50 条
  • [41] Multi-scale image-text matching network for scene and spatio-temporal images
    Yu, Runde
    Jin, Fusheng
    Qiao, Zhuang
    Yuan, Ye
    Wang, Guoren
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 142 : 292 - 300
  • [42] Qualitative semantic spatio-temporal reasoning based on description logics for modeling dynamics of spatio-temporal objects in satellite images
    Ghazouani, Fethi
    Farah, Imed Riadh
    Solaiman, Basel
    2018 4TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2018,
  • [43] Spatio-Temporal Pattern Recognition of Dendritic Spines and Protein Dynamics Using Live Multichannel Fluorescence Microscopy
    On, Vincent
    Zahedi, Atena
    Ethell, Iryna
    Bhanu, Bir
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2042 - 2047
  • [44] A quantitative approach for analyzing the spatio-temporal distribution of 3D intracellular events in fluorescence microscopy
    Pecot, Thierry
    Liu Zengzhen
    Boulanger, Jerome
    Salamero, Jean
    Kervrann, Charles
    ELIFE, 2018, 7
  • [45] REMOTE SENSING IMAGE SPATIO-TEMPORAL FUSION VIA A GENERATIVE ADVERSARIAL NETWORK THROUGH ONE PRIOR IMAGE PAIR
    Song, Yiyao
    Zhang, Hongyan
    Zhang, Liangpei
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 7009 - 7012
  • [46] Multifocal structured illumination fluorescence microscopy with large field-of-view and high spatio-temporal resolution
    Chen, Zhenyue
    Mc Larney, Ben
    Rebling, Johannes
    Dean-Ben, Xose Luis
    Gottschalk, Sven
    Razansky, Daniel
    ADVANCED OPTICAL IMAGING TECHNOLOGIES, 2018, 10816
  • [47] Spatio-temporal deep learning fire smoke detection
    Wu Fan
    Wang Hui-qin
    Wang Ke
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (08) : 1186 - 1195
  • [48] Video summarization via spatio-temporal deep architecture
    Zhong, Sheng-hua
    Wu, Jiaxin
    Jiang, Jianmin
    NEUROCOMPUTING, 2019, 332 : 224 - 235
  • [49] Deep Spatio-Temporal Fuzzy Model for NDVI Forecasting
    Su, Zhao
    Shen, Jun
    Sun, Yu
    Hu, Rizhen
    Zhou, Qingguo
    Yong, Binbin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2025, 33 (01) : 290 - 301
  • [50] Accurate and efficient image reconstruction for spatio-temporal CT
    Chen, YN
    Kudo, H
    Noo, F
    Defrise, M
    2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 3987 - 3991