Deep Image Prior for Spatio-temporal Fluorescence Microscopy Images DECO-DIP

被引:0
|
作者
Meyer, Lina [1 ,2 ,3 ]
Woelk, Lena-Marie [1 ,2 ,3 ]
Gee, Christine E. [4 ]
Lohr, Christian [5 ]
Kannabiran, Sukanya A. [6 ]
Diercks, Bjoern-Philipp [6 ]
Werner, Rene [1 ,2 ,3 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf UKE, Inst Appl Med Informat, Hamburg, Germany
[2] UKE, Dept Computat Neurosci, Hamburg, Germany
[3] UKE, Ctr Biomed Artificial Intelligence bAIome, Hamburg, Germany
[4] UKE, Inst Synapt Physiol, Hamburg, Germany
[5] Univ Hamburg, Inst Zool, Div Neurophysiol, Hamburg, Germany
[6] UKE, Dept Biochem & Mol Cell Biol, Hamburg, Germany
关键词
D O I
10.1007/978-3-658-44037-4_82
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Image deconvolution and denoising is a common postprocessing step to improve the quality of biomedical fluorescence microscopy images. In recent years, this task has been increasingly tackled with the help of supervised deep learning methods. However, generating a large number of training pairs is, if at all possible, often laborious. Here, we present a new deep learning algorithm called DECO-DIP that builds on the Deep Image Prior (DIP) framework and does not rely on training data. We extend DIP by incorporating a novel loss function that, in addition to a standard L-2 data term, contains a term to model the underlying image generation forward model. We apply our framework both to synthetic data and Ca2+ microscopy data of biological samples, namely Jurkat T-cells and astrocytes. DECO-DIP outperforms both classical deconvolution and the standard DIP implementation. We further introduce an extension, DECO-DIP-T, which explicitly utilizes the time dependence in live cell microscopy image series.
引用
收藏
页码:322 / 327
页数:6
相关论文
共 50 条
  • [11] Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method
    Uttenweiler, D
    Veigel, C
    Steubing, R
    Götz, C
    Mann, S
    Haussecker, H
    Jähne, B
    Fink, RHA
    BIOPHYSICAL JOURNAL, 2000, 78 (05) : 2709 - 2715
  • [12] Spatio-temporal subpixel mapping with cloudy images
    Zhang, Chengyuan
    Wang, Qunming
    Xie, Huan
    Ge, Yong
    Atkinson, Peter M.
    SCIENCE OF REMOTE SENSING, 2022, 6
  • [13] Spatio-temporal diffusion of dynamic PET images
    Tauber, C.
    Stute, S.
    Chau, M.
    Spiteri, P.
    Chalon, S.
    Guilloteau, D.
    Buvat, I.
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (20): : 6583 - 6596
  • [14] SPATIO-TEMPORAL POSITION FROM MIRROR IMAGES
    VERESS, SA
    MUNJY, R
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1983, 49 (02): : 207 - 211
  • [15] Spatio-temporal Dynamics of Images with Emotional Bivalence
    Grima Murcia, M. D.
    Lopez-Gordo, M. A.
    Ortiz, Maria J.
    Ferrandez, J. M.
    Fernandez, Eduardo
    ARTIFICIAL COMPUTATION IN BIOLOGY AND MEDICINE, PT I (IWINAC 2015), 2015, 9107 : 203 - 212
  • [16] EigenSegments: A spatio-temporal decomposition of an ensemble of images
    Avidan, S
    COMPUTER VISION - ECCV 2002 PT III, 2002, 2352 : 747 - 758
  • [17] Transition effects characterization on spatio-temporal images
    Ruioloba, RI
    Joly, P
    INTERNET MULTIMEDIA MANAGEMENT SYSTEMS, 2000, 4210 : 299 - 310
  • [18] Spatio-temporal anisotropic diffusion filtering of low S/N fluorescence image sequences
    Uttenweiler, D
    Scharr, H
    Weber, C
    Jaehne, B
    Fink, RHA
    BIOPHYSICAL JOURNAL, 2001, 80 (01) : 504A - 504A
  • [19] DEEP SPATIO-TEMPORAL WIND POWER FORECASTING
    Li, Jiangyuan
    Armandpour, Mohammadreza
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4138 - 4142
  • [20] Unpaired spatio-temporal fusion of image patches (USTFIP) from cloud covered images
    Goyena, Harkaitz
    Perez-Goya, Unai
    Montesino-SanMartin, Manuel
    Militino, Ana F.
    Wang, Qunming
    Atkinson, Peter M.
    Ugarte, M. Dolores
    REMOTE SENSING OF ENVIRONMENT, 2023, 295