Deep Image Prior for Spatio-temporal Fluorescence Microscopy Images DECO-DIP

被引:0
|
作者
Meyer, Lina [1 ,2 ,3 ]
Woelk, Lena-Marie [1 ,2 ,3 ]
Gee, Christine E. [4 ]
Lohr, Christian [5 ]
Kannabiran, Sukanya A. [6 ]
Diercks, Bjoern-Philipp [6 ]
Werner, Rene [1 ,2 ,3 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf UKE, Inst Appl Med Informat, Hamburg, Germany
[2] UKE, Dept Computat Neurosci, Hamburg, Germany
[3] UKE, Ctr Biomed Artificial Intelligence bAIome, Hamburg, Germany
[4] UKE, Inst Synapt Physiol, Hamburg, Germany
[5] Univ Hamburg, Inst Zool, Div Neurophysiol, Hamburg, Germany
[6] UKE, Dept Biochem & Mol Cell Biol, Hamburg, Germany
关键词
D O I
10.1007/978-3-658-44037-4_82
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Image deconvolution and denoising is a common postprocessing step to improve the quality of biomedical fluorescence microscopy images. In recent years, this task has been increasingly tackled with the help of supervised deep learning methods. However, generating a large number of training pairs is, if at all possible, often laborious. Here, we present a new deep learning algorithm called DECO-DIP that builds on the Deep Image Prior (DIP) framework and does not rely on training data. We extend DIP by incorporating a novel loss function that, in addition to a standard L-2 data term, contains a term to model the underlying image generation forward model. We apply our framework both to synthetic data and Ca2+ microscopy data of biological samples, namely Jurkat T-cells and astrocytes. DECO-DIP outperforms both classical deconvolution and the standard DIP implementation. We further introduce an extension, DECO-DIP-T, which explicitly utilizes the time dependence in live cell microscopy image series.
引用
收藏
页码:322 / 327
页数:6
相关论文
共 50 条
  • [31] DeepIST: Deep Image-based Spatio-Temporal Network for Travel Time Estimation
    Fu, Tao-yang
    Lee, Wang-Chien
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 69 - 78
  • [32] A Spatio-Temporal Model for Longitudinal Image-on-Image Regression
    Arnab Hazra
    Brian J. Reich
    Daniel S. Reich
    Russell T. Shinohara
    Ana-Maria Staicu
    Statistics in Biosciences, 2019, 11 : 22 - 46
  • [33] A Spatio-Temporal Model for Longitudinal Image-on-Image Regression
    Hazra, Arnab
    Reich, Brian J.
    Reich, Daniel S.
    Shinohara, Russell T.
    Staicu, Ana-Maria
    STATISTICS IN BIOSCIENCES, 2019, 11 (01) : 22 - 46
  • [34] Spatio-temporal modeling of lung images for cancer detection
    Shen, L
    Zheng, W
    Gao, L
    Huang, H
    Makedon, F
    Pearlman, J
    ONCOLOGY REPORTS, 2006, 15 : 1085 - 1089
  • [35] Spatio-temporal joint probability images for video segmentation
    Li, ZN
    Wei, J
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2000, : 295 - 298
  • [36] Spatio-temporal patterns of satellite images for environmental analysis
    Seixas, J
    GEOGRAPHICAL INFORMATION '97: FROM RESEARCH TO APPLICATION THROUGH COOPERATION, VOLS 1 AND 2, 1997, : 475 - 486
  • [37] Mining Spatio-Temporal Metadata for Satellite Images Interpretation
    Ettabaa, K. Saheb
    Farah, I. R.
    Ahmed, M. B.
    Solaiman, B.
    2008 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES: FROM THEORY TO APPLICATIONS, VOLS 1-5, 2008, : 736 - +
  • [38] SPATIO-TEMPORAL ANALYSIS OF EYE FIXATIONS DATA IN IMAGES
    Sharma, Puneet
    Cheikh, Faouzi A.
    Hardeberg, Jon Y.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1150 - 1154
  • [39] SPATIO-TEMPORAL REGISTRATION OF 3D MICROSCOPY IMAGE SEQUENCES OF ARABIDOPSIS FLORAL MERISTEMS
    Michelin, Gael
    Refahi, Yassin
    Wightman, Raymond
    Jonsson, Henrik
    Traas, Jan
    Godin, Christophe
    Malandain, Gregoire
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 1127 - 1130
  • [40] Spatio-temporal prior shape constraint for level set segmentation
    Bailloeul, T
    Prinet, V
    Serra, B
    Marthon, P
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 2005, 3757 : 503 - 519