Deep Image Prior for Spatio-temporal Fluorescence Microscopy Images DECO-DIP

被引:0
|
作者
Meyer, Lina [1 ,2 ,3 ]
Woelk, Lena-Marie [1 ,2 ,3 ]
Gee, Christine E. [4 ]
Lohr, Christian [5 ]
Kannabiran, Sukanya A. [6 ]
Diercks, Bjoern-Philipp [6 ]
Werner, Rene [1 ,2 ,3 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf UKE, Inst Appl Med Informat, Hamburg, Germany
[2] UKE, Dept Computat Neurosci, Hamburg, Germany
[3] UKE, Ctr Biomed Artificial Intelligence bAIome, Hamburg, Germany
[4] UKE, Inst Synapt Physiol, Hamburg, Germany
[5] Univ Hamburg, Inst Zool, Div Neurophysiol, Hamburg, Germany
[6] UKE, Dept Biochem & Mol Cell Biol, Hamburg, Germany
关键词
D O I
10.1007/978-3-658-44037-4_82
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Image deconvolution and denoising is a common postprocessing step to improve the quality of biomedical fluorescence microscopy images. In recent years, this task has been increasingly tackled with the help of supervised deep learning methods. However, generating a large number of training pairs is, if at all possible, often laborious. Here, we present a new deep learning algorithm called DECO-DIP that builds on the Deep Image Prior (DIP) framework and does not rely on training data. We extend DIP by incorporating a novel loss function that, in addition to a standard L-2 data term, contains a term to model the underlying image generation forward model. We apply our framework both to synthetic data and Ca2+ microscopy data of biological samples, namely Jurkat T-cells and astrocytes. DECO-DIP outperforms both classical deconvolution and the standard DIP implementation. We further introduce an extension, DECO-DIP-T, which explicitly utilizes the time dependence in live cell microscopy image series.
引用
收藏
页码:322 / 327
页数:6
相关论文
共 50 条
  • [21] Image reconstruction by spatio-temporal coherence transfer
    Welch, G
    Rhodes, WT
    FREE-SPACE LASER COMMUNICATION AND LASER IMAGING, 2002, 4489 : 60 - 65
  • [22] Spatio-temporal alignment of pedobarographic image sequences
    Francisco P. M. Oliveira
    Andreia Sousa
    Rubim Santos
    João Manuel R. S. Tavares
    Medical & Biological Engineering & Computing, 2011, 49 : 843 - 850
  • [23] INTERPRETATION OF IMAGE FLOW - A SPATIO-TEMPORAL APPROACH
    SUBBARAO, M
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (03) : 266 - 278
  • [24] Spatio-temporal alignment of pedobarographic image sequences
    Oliveira, Francisco P. M.
    Sousa, Andreia
    Santos, Rubim
    Tavares, Joao Manuel R. S.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2011, 49 (07) : 843 - 850
  • [25] Spatio-Temporal Memory Attention for Image Captioning
    Ji, Junzhong
    Xu, Cheng
    Zhang, Xiaodan
    Wang, Boyue
    Song, Xinhang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7615 - 7628
  • [26] Multilinear Methods for Spatio-Temporal Image Recognition
    Itoh, Hayato
    Imiya, Atsushi
    Sakai, Tomoya
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, 2017, 10424 : 148 - 159
  • [27] An image warping approach to spatio-temporal modelling
    Aberg, S
    Lindgren, F
    Malmberg, A
    Holst, J
    Holst, U
    ENVIRONMETRICS, 2005, 16 (08) : 833 - 848
  • [28] Image enhancement for fluorescence microscopy based on deep learning with prior knowledge of aberration
    Hu, Lejia
    Hu, Shuwen
    Gong, Wei
    Si, Ke
    OPTICS LETTERS, 2021, 46 (09) : 2055 - 2058
  • [29] Overview of Application of Deep Learning With Image Data and Spatio-temporal Data of Power Grid
    Zhang Y.
    Qiu R.
    Yang F.
    Xu S.
    Shi X.
    He X.
    Dianwang Jishu/Power System Technology, 2019, 43 (06): : 1865 - 1873
  • [30] Deep-STaR: Classification of image time series based on spatio-temporal representations
    Chelali, Mohamed
    Kurtz, Camille
    Puissant, Anne
    Vincent, Nicole
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 208