Deep Image Prior for Spatio-temporal Fluorescence Microscopy Images DECO-DIP

被引:0
|
作者
Meyer, Lina [1 ,2 ,3 ]
Woelk, Lena-Marie [1 ,2 ,3 ]
Gee, Christine E. [4 ]
Lohr, Christian [5 ]
Kannabiran, Sukanya A. [6 ]
Diercks, Bjoern-Philipp [6 ]
Werner, Rene [1 ,2 ,3 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf UKE, Inst Appl Med Informat, Hamburg, Germany
[2] UKE, Dept Computat Neurosci, Hamburg, Germany
[3] UKE, Ctr Biomed Artificial Intelligence bAIome, Hamburg, Germany
[4] UKE, Inst Synapt Physiol, Hamburg, Germany
[5] Univ Hamburg, Inst Zool, Div Neurophysiol, Hamburg, Germany
[6] UKE, Dept Biochem & Mol Cell Biol, Hamburg, Germany
关键词
D O I
10.1007/978-3-658-44037-4_82
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Image deconvolution and denoising is a common postprocessing step to improve the quality of biomedical fluorescence microscopy images. In recent years, this task has been increasingly tackled with the help of supervised deep learning methods. However, generating a large number of training pairs is, if at all possible, often laborious. Here, we present a new deep learning algorithm called DECO-DIP that builds on the Deep Image Prior (DIP) framework and does not rely on training data. We extend DIP by incorporating a novel loss function that, in addition to a standard L-2 data term, contains a term to model the underlying image generation forward model. We apply our framework both to synthetic data and Ca2+ microscopy data of biological samples, namely Jurkat T-cells and astrocytes. DECO-DIP outperforms both classical deconvolution and the standard DIP implementation. We further introduce an extension, DECO-DIP-T, which explicitly utilizes the time dependence in live cell microscopy image series.
引用
收藏
页码:322 / 327
页数:6
相关论文
共 50 条
  • [1] Spatio-temporal control in multiphoton fluorescence laser-scanning microscopy
    De, Arijit Kumar
    Roy, Debjit
    Goswami, Debabrata
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES X, 2010, 7569
  • [2] Spatio-Temporal Control in Multiphoton Fluorescence Laser-Scanning Microscopy
    Goswami, Debabrata
    De, Arijit Kumar
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 586A - 586A
  • [3] Deep Learning Model for Global Spatio-Temporal Image Prediction
    Nikezic, Dusan P.
    Ramadani, Uzahir R.
    Radivojevic, Dusan S.
    Lazovic, Ivan M.
    Mirkov, Nikola S.
    MATHEMATICS, 2022, 10 (18)
  • [4] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313
  • [5] SPATIO-TEMPORAL REGISTRATION OF EMBRYO IMAGES
    Guignard, L.
    Godin, C.
    Fiuza, U. -M.
    Hufnagel, L.
    Lemaire, P.
    Malandain, G.
    2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 778 - 781
  • [6] Interpolating Deep Spatio-Temporal Inference Network Features for Image Classification
    Zhang, Yongfeng
    Shang, Changjing
    Shen, Qiang
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 1819 - 1826
  • [7] Spatio-temporal model for image motion
    Park, E
    Wohn, K
    ELECTRONICS LETTERS, 1998, 34 (16) : 1574 - 1575
  • [8] Spatio-temporal analysis of omni image
    Kawasaki, H
    Ikeuchi, K
    Sakauchi, M
    IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, VOL II, 2000, : 577 - 584
  • [9] Illumination invariant segmentation of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 617 - 622
  • [10] Spatio-temporal compressed quantitative acoustic microscopy
    Kim, J-H.
    Mamou, J.
    Kouame, D.
    Achim, A.
    Basarab, A.
    2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2019, : 1156 - 1159