Double Perovskites Materials Based Magnetic Tunnel Junction Devices for MRAM Applications

被引:0
|
作者
Kumari, Seema [1 ]
Yadav, Rekha [1 ]
机构
[1] DCRUST Murthal, Dept ECE, Murthal, Haryana, India
关键词
spintronics; MTJ; 2D materials; tunnel magnetoresistance; DTMR; 1ST-PRINCIPLES;
D O I
10.3103/S875669902470050X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper shows how double perovskites affect the operation of magnetic tunnel junction (MTJ) memory devices. Spin-polarized MTJs may provide a viable alternative to charge-based storage devices. The proposed MTJ memory device uses Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}, Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}, and Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}CuBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document} for the dielectric layer. A composite dielectric layer (CDL) formed by MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}/Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}/Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}CuBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO is presented in this paper and compared. The CDL has introduced ferromagnetic layers between CoFeB and Fe in a penta-layer MTJ device. MTJ devices with Fe-CDL-Fe and CoFeB-CDL-CoFeB have higher switching currents and TMR ratios than those with Fe-MgO-Fe. The antiparallel resistance, parallel resistance, spin transfer torque (STT), tunnel magnetoresistance (TMR), and differential TMR of the proposed MTJ are calculated using a nonequilibrium Green's function simulator. The power consumption of Fe-MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO-Fe based MTJ devices is 14.25 nW. The Fe-MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO-Fe showed the highest TMR ratio (1137\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}) among all the MTJ models studied.
引用
收藏
页码:435 / 446
页数:12
相关论文
共 50 条
  • [1] Recent developments in Magnetic Tunnel Junction MRAM
    Tehrani, S
    Engel, B
    Slaughter, JM
    Chen, E
    DeHerrera, M
    Durlam, M
    Naji, P
    Whig, R
    Janesky, J
    Calder, J
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (05) : 2752 - 2757
  • [2] Development of magnetic tunnel junction for toggle MRAM
    Kim, HJ
    Oh, SC
    Bae, JS
    Nam, KT
    Lee, JE
    Park, SO
    Kim, HS
    Lee, NI
    Chung, UI
    Moon, JT
    Kang, HK
    IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (10) : 2661 - 2663
  • [3] Magnetic tunnel junction (MTJ) patterning for magnetic random access memory (MRAM) process applications
    Nagahara, K
    Mukai, T
    Ishiwata, N
    Hada, H
    Tahara, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2003, 42 (5B): : L499 - L501
  • [4] Magnetic tunnel junction (MTJ) patterning for magnetic random access memory (MRAM) process applications
    Nagahara, Kiyokazu
    Mukai, Tomonori
    Ishiwata, Nobuyuki
    Hada, Hiromitu
    Tahara, Shuichi
    Japanese Journal of Applied Physics, Part 2: Letters, 2003, 42 (5 B):
  • [5] Development of a magnetic tunnel transistor based on a double tunnel junction
    Rodary, G
    Hehn, M
    Dimopoulos, T
    Lacour, D
    Bangert, J
    Jaffrès, H
    Montaigne, F
    van Dau, FN
    Petroff, F
    Schuhl, A
    Wecker, J
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 290 : 1097 - 1099
  • [6] Double spin-torque magnetic tunnel junction devices for last-level cache applications
    Hu, G.
    Safranski, C.
    Sun, J. Z.
    Hashemi, P.
    Brown, S. L.
    Bruley, J.
    Buzi, L.
    D'Emic, C. P.
    Galligan, E.
    Gottwald, M. G.
    Gunawan, O.
    Lee, J.
    Karimeddiny, S.
    Trouilloud, P. L.
    Worledge, D. C.
    2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2022,
  • [7] Design and Analysis of Magnetic Tunnel Junction for Spintronic-Based STT-MRAM
    Sharma, Parul
    Gill, Sandeep Singh
    Raj, Balwinder
    SPIN, 2022, 12 (03)
  • [8] STT-MRAM with double magnetic tunnel junctions
    Hu, G.
    Lee, J. H.
    Nowak, J. J.
    Sun, J. Z.
    Harms, J.
    Annunziata, A.
    Brown, S.
    Chen, W.
    Kim, Y. H.
    Lauer, G.
    Liu, L.
    Marchack, N.
    Murthy, S.
    O'Sullivan, E. J.
    Park, J. H.
    Reuter, M.
    Robertazzi, R. P.
    Trouilloud, P. L.
    Zhu, Y.
    Worledge, D. C.
    2015 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2015,
  • [9] Magnetic Tunnel Junction Applications
    Maciel, Nilson
    Marques, Elaine
    Naviner, Lirida
    Zhou, Yongliang
    Cai, Hao
    SENSORS, 2020, 20 (01)
  • [10] Noise in magnetic tunnel junction devices
    Klaassen, KB
    van Peppen, JCL
    Xing, X
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) : 8573 - 8575