Double Perovskites Materials Based Magnetic Tunnel Junction Devices for MRAM Applications

被引:0
|
作者
Kumari, Seema [1 ]
Yadav, Rekha [1 ]
机构
[1] DCRUST Murthal, Dept ECE, Murthal, Haryana, India
关键词
spintronics; MTJ; 2D materials; tunnel magnetoresistance; DTMR; 1ST-PRINCIPLES;
D O I
10.3103/S875669902470050X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper shows how double perovskites affect the operation of magnetic tunnel junction (MTJ) memory devices. Spin-polarized MTJs may provide a viable alternative to charge-based storage devices. The proposed MTJ memory device uses Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}, Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}, and Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}CuBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document} for the dielectric layer. A composite dielectric layer (CDL) formed by MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}/Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}/Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}CuBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO is presented in this paper and compared. The CDL has introduced ferromagnetic layers between CoFeB and Fe in a penta-layer MTJ device. MTJ devices with Fe-CDL-Fe and CoFeB-CDL-CoFeB have higher switching currents and TMR ratios than those with Fe-MgO-Fe. The antiparallel resistance, parallel resistance, spin transfer torque (STT), tunnel magnetoresistance (TMR), and differential TMR of the proposed MTJ are calculated using a nonequilibrium Green's function simulator. The power consumption of Fe-MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO-Fe based MTJ devices is 14.25 nW. The Fe-MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO-Fe showed the highest TMR ratio (1137\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}) among all the MTJ models studied.
引用
收藏
页码:435 / 446
页数:12
相关论文
共 50 条
  • [21] Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices
    Liu, H.
    Bedau, D.
    Backes, D.
    Katine, J. A.
    Langer, J.
    Kent, A. D.
    APPLIED PHYSICS LETTERS, 2010, 97 (24)
  • [22] Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip
    Gallagher, WJ
    Parkin, SSP
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2006, 50 (01) : 5 - 23
  • [23] THE IMPORTANCE OF Fe SURFACE STATES FOR MAGNETIC TUNNEL JUNCTION BASED SPINTRONIC DEVICES
    Chantis, Athanasios N.
    Belashchenko, Kirill D.
    Tsymbal, Evgeny Y.
    Sus, Inna V.
    MODERN PHYSICS LETTERS B, 2008, 22 (26): : 2529 - 2551
  • [24] Unipolar Magnetoelectric Magnetic Tunnel Junction Devices and Circuits
    Sharma, Nishtha
    Marshall, Andrew
    Dowben, Peter
    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2017, : 861 - 865
  • [25] Large resistance change on magnetic tunnel junction based molecular spintronics devices
    Tyagi, Pawan
    Friebe, Edward
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 453 : 186 - 192
  • [26] STRUCTURAL STABILITY OF MAGNETIC TUNNEL JUNCTION BASED MOLECULAR SPINTRONICS DEVICES (MTJMSD)
    Dillard, Joshua
    Amir, Uzma
    Tyagi, Pawan
    Lamberti, Vincent
    PROCEEDINGS OF THE ASME 2020 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2020, VOL 2B, 2020,
  • [27] STT-MRAM-Based PUF Architecture Exploiting Magnetic Tunnel Junction Fabrication-Induced Variability
    Vatajelu, Elena Ioana
    Di Natale, Giorgio
    Barbareschi, Mario
    Torres, Lionel
    Indaco, Marco
    Prinetto, Paolo
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2016, 13 (01)
  • [28] A Multi-Level Cell for STT-MRAM with Biaxial Magnetic Tunnel Junction
    Vatankhahghadim, Aynaz
    Sheikholeslami, Ali
    2015 IEEE 45TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, 2015, : 158 - 163
  • [29] High performance perpendicular magnetic tunnel junction with Co/Ir interfacial anisotropy for embedded and standalone STT-MRAM applications
    Huai, Yiming
    Gan, Huadong
    Wang, Zihui
    Xu, Pengfa
    Hao, Xiaojie
    Yen, Bing K.
    Malmhall, Roger
    Pakala, Nirav
    Wang, Cory
    Zhang, Jing
    Zhou, Yuchen
    Jung, Dongha
    Satoh, Kimihiro
    Wang, Rongjun
    Xue, Lin
    Pakala, Mahendra
    APPLIED PHYSICS LETTERS, 2018, 112 (09)
  • [30] Tunnel Junction Testbed Based Molecular Devices
    Tyagi, Pawan
    Baker, Collin
    D'Angelo, Christopher
    2014 IEEE 14TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2014, : 801 - 804