Double Perovskites Materials Based Magnetic Tunnel Junction Devices for MRAM Applications

被引:0
|
作者
Kumari, Seema [1 ]
Yadav, Rekha [1 ]
机构
[1] DCRUST Murthal, Dept ECE, Murthal, Haryana, India
关键词
spintronics; MTJ; 2D materials; tunnel magnetoresistance; DTMR; 1ST-PRINCIPLES;
D O I
10.3103/S875669902470050X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper shows how double perovskites affect the operation of magnetic tunnel junction (MTJ) memory devices. Spin-polarized MTJs may provide a viable alternative to charge-based storage devices. The proposed MTJ memory device uses Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}, Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}, and Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}CuBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document} for the dielectric layer. A composite dielectric layer (CDL) formed by MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}/Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}/Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}CuBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO is presented in this paper and compared. The CDL has introduced ferromagnetic layers between CoFeB and Fe in a penta-layer MTJ device. MTJ devices with Fe-CDL-Fe and CoFeB-CDL-CoFeB have higher switching currents and TMR ratios than those with Fe-MgO-Fe. The antiparallel resistance, parallel resistance, spin transfer torque (STT), tunnel magnetoresistance (TMR), and differential TMR of the proposed MTJ are calculated using a nonequilibrium Green's function simulator. The power consumption of Fe-MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO-Fe based MTJ devices is 14.25 nW. The Fe-MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO-Fe showed the highest TMR ratio (1137\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}) among all the MTJ models studied.
引用
收藏
页码:435 / 446
页数:12
相关论文
共 50 条
  • [31] Double MgO-Based Perpendicular Magnetic Tunnel Junction for Artificial Neuron
    Kim, Dong Won
    Yi, Woo Seok
    Choi, Jin Young
    Ashiba, Kei
    Baek, Jong Ung
    Jun, Han Sol
    Kim, Jae Joon
    Park, Jea Gun
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [32] A non-collinear double MgO based perpendicular magnetic tunnel junction
    Lourembam, James
    Chen, Bingjin
    Huang, Aihong
    Allauddin, Salauddeen
    Ter Lim, Sze
    APPLIED PHYSICS LETTERS, 2018, 113 (02)
  • [33] 2X reduction of STT-MRAM switching current using double spin-torque magnetic tunnel junction
    Hu, G.
    Lauer, G.
    Sun, J. Z.
    Hashemi, P.
    Safranski, C.
    Brown, S. L.
    Buzi, L.
    Edwards, E. R. J.
    D'Emic, C. P.
    Galligan, E.
    Gottwald, M. G.
    Gunawan, O.
    Jung, H.
    Kim, J.
    Latzko, K.
    Nowak, J. J.
    Trouilloud, P. L.
    Zare, S.
    Worledge, D. C.
    2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
  • [34] Reliable Sub-Nanosecond Switching in Magnetic Tunnel Junctions for MRAM Applications
    Safranski, Christopher
    Hu, Guohan
    Sun, Jonathan Z.
    Hashemi, Pouya
    Brown, Stephen L.
    Buzi, Luxherta
    D'Emic, Christopher P.
    Edwards, Eric R. J.
    Galligan, Eileen
    Gottwald, Matthias G.
    Gunawan, Oki
    Karimeddiny, Saba
    Jung, Hyunsung
    Kim, Juhyun
    Latzko, Ken
    Trouilloud, Philip L.
    Worledge, Daniel C.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (12) : 7180 - 7183
  • [35] Fabrication of Domain Wall based Magnetic Tunnel Junction Devices with Intrinsic Neuromorphic Functionality
    Leonard, Thomas
    Liu, Samuel
    Jin, Harrison
    Friedman, Joseph S.
    Bennett, Christopher
    Incorvia, Jean Anne
    2023 IEEE 34TH MAGNETIC RECORDING CONFERENCE, TMRC, 2023,
  • [36] AI-guided framework for the design of materials and devices for magnetic-tunnel-junction-based true random number generators
    Karan P. Patel
    Andrew Maicke
    Jared Arzate
    Jaesuk Kwon
    J. Darby Smith
    James B. Aimone
    Jean Anne C. Incorvia
    Suma G. Cardwell
    Catherine D. Schuman
    Communications Engineering, 4 (1):
  • [37] Contactless Current Sensors Based on Magnetic Tunnel Junction for Smart Grid Applications
    Ouyang, Yong
    He, Jinliang
    Hu, Jun
    Zhao, Gen
    Wang, Zhongxu
    Wang, Shan X.
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (11)
  • [38] Stochastic artificial synapses based on nanoscale magnetic tunnel junction for neuromorphic applications
    Lv, Wenxing
    Cai, Jialin
    Tu, Huayao
    Zhang, Like
    Li, Rongxin
    Yuan, Zhe
    Finocchio, Giovanni
    Li, Shuping
    Sun, Xuemei
    Bian, Lifeng
    Zhang, Baoshun
    Xiong, Rui
    Zeng, Zhongming
    APPLIED PHYSICS LETTERS, 2022, 121 (23)
  • [39] Multidomain Interactions in Perpendicular Magnetic Tunnel Junction (p-MTJ): Enabling Multistate MRAM
    Pandey, Nilesh
    Chauhan, Yogesh Singh
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (05) : 2304 - 2311
  • [40] Macro-Model of Magnetic Tunnel Junction for STT-MRAM including Dynamic Behavior
    Kim, Kyungmin
    Yoo, Changsik
    JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2014, 14 (06) : 728 - 732