On the well-posedness of some model arising in the mathematical biology

被引:0
|
作者
Efendiev, Messoud [1 ,2 ]
Vougalter, Vitali [3 ]
机构
[1] Helmholtz Zent Munchen, Inst Computat Biol, Neuherberg, Germany
[2] Marmara Univ, Dept Math, Istanbul, Turkiye
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
integro-differential equations; Sobolev spaces; well-posedness; ANOMALOUS DIFFUSION; TRAVELING-WAVES;
D O I
10.1002/mma.10507
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we establish the global well-posedness in W-1,W-2,W-2(R x R+) of the integro-differential equation in the case of anomalous diffusion when the one-dimensional negative Laplace operator is raised to a fractional power in the presence of the transport term. The model is relevant to the cell population dynamics in the mathematical biology. Our proof relies on a fixed point technique.
引用
收藏
页数:12
相关论文
共 50 条