On the well-posedness of some model arising in the mathematical biology

被引:0
|
作者
Efendiev, Messoud [1 ,2 ]
Vougalter, Vitali [3 ]
机构
[1] Helmholtz Zent Munchen, Inst Computat Biol, Neuherberg, Germany
[2] Marmara Univ, Dept Math, Istanbul, Turkiye
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
integro-differential equations; Sobolev spaces; well-posedness; ANOMALOUS DIFFUSION; TRAVELING-WAVES;
D O I
10.1002/mma.10507
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we establish the global well-posedness in W-1,W-2,W-2(R x R+) of the integro-differential equation in the case of anomalous diffusion when the one-dimensional negative Laplace operator is raised to a fractional power in the presence of the transport term. The model is relevant to the cell population dynamics in the mathematical biology. Our proof relies on a fixed point technique.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [22] The well-posedness of a SARS epidemic model
    Hao, Ruixiao
    Zhang, Lingling
    Guo, Lina
    WSEAS Transactions on Mathematics, 2014, 13 (01) : 105 - 114
  • [23] Well-Posedness of Mathematical Models in Continuum Mechanics and Thermodynamics
    E. V. Radkevich
    Journal of Mathematical Sciences, 2004, 124 (6) : 5335 - 5363
  • [24] Well-posedness for a slow erosion model
    Coclite, Giuseppe Maria
    Jannelli, Enrico
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (01) : 337 - 355
  • [25] Well-posedness of a network transport model
    Bertsch, Michiel
    Cozzolino, Emilia
    Tora, Veronica
    Nonlinear Analysis, Theory, Methods and Applications, 2025, 253
  • [26] WELL-POSEDNESS RESULTS FOR A NONLINEAR STOKES PROBLEM ARISING IN GLACIOLOGY
    Chen, Qingshan
    Gunzburger, Max
    Perego, Mauro
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (05) : 2710 - 2733
  • [27] Unified approaches to well-posedness with some applications
    Yang, H
    Yu, J
    JOURNAL OF GLOBAL OPTIMIZATION, 2005, 31 (03) : 371 - 381
  • [28] On the well-posedness of some mechanical variational problems
    Royis, P
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2006, 30 (03) : 255 - 269
  • [29] Well-posedness for mean-field evolutions arising in superconductivity
    Duerinckx, Mitia
    Fischer, Julian
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (05): : 1267 - 1319
  • [30] Unified Approaches to Well-Posedness with Some Applications
    Hui Yang
    Jian Yu
    Journal of Global Optimization, 2005, 31 : 371 - 381