The well-posedness of a SARS epidemic model

被引:0
|
作者
Hao, Ruixiao [1 ]
Zhang, Lingling [1 ]
Guo, Lina [1 ]
机构
[1] Taiyuan University of Technology, College of Mathematics, Yingze Street 79, Taiyuan, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:105 / 114
相关论文
共 50 条
  • [1] Well-posedness and stability analysis of an epidemic model with infection age and spatial diffusion
    Walker, Christoph
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 87 (03)
  • [2] Well-posedness and stability analysis of an epidemic model with infection age and spatial diffusion
    Christoph Walker
    [J]. Journal of Mathematical Biology, 2023, 87
  • [3] WELL-POSEDNESS FOR A MODEL OF INDIVIDUAL CLUSTERING
    Nasreddine, Elissar
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (10): : 2647 - 2668
  • [4] Well-posedness of the hydrodynamic model for semiconductors
    Natl Chiao Tung Univ, Hsinchu, Taiwan
    [J]. Math Methods Appl Sci, 18 (1489-1507):
  • [5] Global well-posedness of a Bardina model
    Zhou, Yong
    Fan, Jishan
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 605 - 607
  • [7] Well-Posedness
    Veselic, K.
    [J]. DAMPED OSCILLATIONS OF LINEAR SYSTEMS: A MATHEMATICAL INTRODUCTION, 2011, 2023 : 143 - 143
  • [8] Well-posedness of a network transport model
    Bertsch, Michiel
    Cozzolino, Emilia
    Tora, Veronica
    [J]. Nonlinear Analysis, Theory, Methods and Applications, 2025, 253
  • [9] Well-posedness for a slow erosion model
    Coclite, Giuseppe Maria
    Jannelli, Enrico
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (01) : 337 - 355
  • [10] WELL-POSEDNESS OF A MODEL FOR WATER WAVES WITH VISCOSITY
    Ambrose, David M.
    Bona, Jerry L.
    Nicholls, David P.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (04): : 1113 - 1137