Well-posedness for a molecular beam epitaxy model

被引:0
|
作者
Emerald, Louis [1 ]
da Silva, Daniel Oliveira [2 ]
Tesfahun, Achenef [1 ]
机构
[1] Nazarbayev Univ, Dept Math, Qabanbai Batyr Ave 53, Nur Sultan 010000, Kazakhstan
[2] Calif State Univ Los Angeles, Dept Math, 5151 State Univ Dr, Los Angeles, CA 90032 USA
关键词
Molecular beam epitaxy; Well-posedness; Stochastic MBE; GROWTH;
D O I
10.1016/j.jmaa.2024.128617
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a general molecular beam epitaxy (MBE) equation modeling the epitaxial growth of thin films. We show that, in the deterministic case, the associated Cauchy problem admits a unique smooth solution for all time, given initial data in the space X-0 = L-2(R-d) boolean AND W-center dot(1,4)(R-d) with d = 1, 2. This improves a recent result by Ag & eacute;las [1], who established global existence in H-3(R-d). Moreover, we investigate the local existence and uniqueness of solutions in the space X0 for the stochastic MBE equation, with an additive noise that is white in time and regular in the space variable. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Well-posedness for a damped shear beam model
    Zhou, Jun
    APPLIED MATHEMATICS LETTERS, 2024, 158
  • [2] Global well-posedness of solutions for the epitaxy thin film growth model
    Duan, Ning
    Liu, Fengnan
    Zhao, Xiaopeng
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (04): : 565 - 580
  • [3] Well-posedness of a two-scale model for liquid phase epitaxy with elasticity
    Kutter, Michael
    Rohde, Christian
    Saendig, Anna-Margarete
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2017, 29 (04) : 989 - 1016
  • [4] Well-posedness of a two-scale model for liquid phase epitaxy with elasticity
    Michael Kutter
    Christian Rohde
    Anna-Margarete Sändig
    Continuum Mechanics and Thermodynamics, 2017, 29 : 989 - 1016
  • [5] WELL-POSEDNESS FOR A MODEL OF INDIVIDUAL CLUSTERING
    Nasreddine, Elissar
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (10): : 2647 - 2668
  • [6] Global well-posedness of a Bardina model
    Zhou, Yong
    Fan, Jishan
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 605 - 607
  • [7] Well-posedness of the hydrodynamic model for semiconductors
    Natl Chiao Tung Univ, Hsinchu, Taiwan
    Math Methods Appl Sci, 18 (1489-1507):
  • [9] The well-posedness of a SARS epidemic model
    Hao, Ruixiao
    Zhang, Lingling
    Guo, Lina
    WSEAS Transactions on Mathematics, 2014, 13 (01) : 105 - 114
  • [10] Well-Posedness
    Veselic, K.
    DAMPED OSCILLATIONS OF LINEAR SYSTEMS: A MATHEMATICAL INTRODUCTION, 2011, 2023 : 143 - 143