Well-posedness for a model of prion proliferation dynamics

被引:0
|
作者
Philippe Laurençot
Christoph Walker
机构
[1] Université Paul Sabatier - Toulouse 3,Mathématiques pour l’Industrie et la Physique, CNRS UMR 5640
[2] Vanderbilt University,Department of Mathematics
来源
关键词
35F25; 45K05; 92B05; Prion proliferation; weak solutions; uniqueness; existence;
D O I
暂无
中图分类号
学科分类号
摘要
The model considered consists of an ordinary differential equation coupled with an integro-partial differential equation and describes the interaction between non-infectious and infectious prion proteins. We provide sufficient conditions for uniqueness of monomer-preserving weak solutions. In addition, we also prove existence of weak solutions under rather general assumptions on the involved degradation rates.
引用
收藏
页码:241 / 264
页数:23
相关论文
共 50 条
  • [1] Well-posedness for a model of prion proliferation dynamics
    Laurencot, Philippe
    Walker, Christoph
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (02) : 241 - 264
  • [2] WELL-POSEDNESS FOR A MODEL OF INDIVIDUAL CLUSTERING
    Nasreddine, Elissar
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (10): : 2647 - 2668
  • [3] Well-posedness of the hydrodynamic model for semiconductors
    Natl Chiao Tung Univ, Hsinchu, Taiwan
    [J]. Math Methods Appl Sci, 18 (1489-1507):
  • [4] Global well-posedness of a Bardina model
    Zhou, Yong
    Fan, Jishan
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 605 - 607
  • [6] The well-posedness of a SARS epidemic model
    Hao, Ruixiao
    Zhang, Lingling
    Guo, Lina
    [J]. WSEAS Transactions on Mathematics, 2014, 13 (01) : 105 - 114
  • [7] Well-Posedness
    Veselic, K.
    [J]. DAMPED OSCILLATIONS OF LINEAR SYSTEMS: A MATHEMATICAL INTRODUCTION, 2011, 2023 : 143 - 143
  • [9] Well-posedness of the limiting equation of a noisy consensus model in opinion dynamics
    Chazelle, Bernard
    Jiu, Quansen
    Li, Qianxiao
    Wang, Chu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 365 - 397
  • [10] Well-posedness of a network transport model
    Bertsch, Michiel
    Cozzolino, Emilia
    Tora, Veronica
    [J]. Nonlinear Analysis, Theory, Methods and Applications, 2025, 253