Power-Law Entanglement and Hilbert Space Fragmentation in Nonreciprocal Quantum Circuits

被引:1
|
作者
Klocke, K. [1 ]
Moore, J. E. [1 ,2 ]
Buchhold, M. [3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
关键词
CROSSOVER SCALING FUNCTIONS; CONSERVATION-LAWS; MODEL; DEPOSITION; EVAPORATION; CHAIN;
D O I
10.1103/PhysRevLett.133.070401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum circuits utilizing measurement to evolve a quantum wave function offer a new and rich playground to engineer unconventional entanglement dynamics. Here, we introduce a hybrid, nonreciprocal setup featuring a quantum circuit, whose updates are conditioned on the state of a classical dynamical agent. In our example the circuit is represented by a Majorana quantum chain controlled by a classical N- state Potts chain undergoing pair flips. The local orientation of the classical spins controls whether randomly drawn local measurements on the quantum chain are allowed or not. This imposes a dynamical kinetic constraint on the entanglement growth, described by the transfer matrix of an N- colored loop model. It yields an equivalent description of the circuit by an SU ( N )-symmetric Temperley-Lieb Hamiltonian or by a kinetically constrained surface growth model for an N- component height field. For N = 2 , we find a diffusive growth of the half-chain entanglement toward a stationary profile S(L) ( L ) L 1 = 2 for L sites. For N >= 3 , the kinetic constraints impose Hilbert space fragmentation, yielding subdiffusive growth toward S(L) ( L ) L 0 . 57 . This showcases how the control by a classical dynamical agent can enrich the entanglement dynamics in quantum circuits, paving a route toward novel entanglement dynamics in nonreciprocal hybrid circuit architectures.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Quantum percolation in power-law diluted chains
    Lima, RPA
    Lyra, ML
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 297 (1-2) : 157 - 163
  • [22] . Power-law quantum distributions in protoneutron stars
    Gervino, G.
    Lavagno, A.
    Pigato, D.
    6TH INTERNATIONAL WORKSHOP DICE2012 SPACETIME - MATTER - QUANTUM MECHANICS: FROM THE PLANCK SCALE TO EMERGENT PHENOMENA, 2013, 442
  • [23] Robustness of Quantum Dot Power-Law Blinking
    Bharadwaj, Palash
    Novotny, Lukas
    NANO LETTERS, 2011, 11 (05) : 2137 - 2141
  • [24] Protecting Hilbert space fragmentation through quantum Zeno dynamics
    Patil, Pranay
    Singhania, Ayushi
    Halimeh, Jad C.
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [25] Quantum recurrences in driven power-law potentials
    Iqbal, Shahid
    Qurat-ul-Ann
    Saif, Farhan
    PHYSICS LETTERS A, 2006, 356 (03) : 231 - 236
  • [26] Quantum evolution of power-law mixed states
    Batle, J
    Plastino, AR
    Casas, M
    Plastino, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 308 (1-4) : 233 - 244
  • [27] Power-law Photoluminescence Decay in Quantum Dots
    Kral, Karel
    Mensik, Miroslav
    7TH INTERNATIONAL CONFERENCE ON LOW DIMENSIONAL STRUCTURES AND DEVICES (LDSD 2011), 2014, 1598 : 87 - 90
  • [28] Power-Law Entanglement Spectrum in Many-Body Localized Phases
    Serbyn, Maksym
    Michailidis, Alexios A.
    Abanin, Dmitry A.
    Papic, Z.
    PHYSICAL REVIEW LETTERS, 2016, 117 (16)
  • [29] Optimal State Transfer and Entanglement Generation in Power-Law Interacting Systems
    Tran, Minh C.
    Guo, Andrew Y.
    Deshpande, Abhinav
    Lucas, Andrew
    Gorshkov, Alexey, V
    PHYSICAL REVIEW X, 2021, 11 (03):
  • [30] Electron Power-Law Spectra in Solar and Space Plasmas
    M. Oka
    J. Birn
    M. Battaglia
    C. C. Chaston
    S. M. Hatch
    G. Livadiotis
    S. Imada
    Y. Miyoshi
    M. Kuhar
    F. Effenberger
    E. Eriksson
    Y. V. Khotyaintsev
    A. Retinò
    Space Science Reviews, 2018, 214