Power-Law Entanglement and Hilbert Space Fragmentation in Nonreciprocal Quantum Circuits

被引:1
|
作者
Klocke, K. [1 ]
Moore, J. E. [1 ,2 ]
Buchhold, M. [3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
关键词
CROSSOVER SCALING FUNCTIONS; CONSERVATION-LAWS; MODEL; DEPOSITION; EVAPORATION; CHAIN;
D O I
10.1103/PhysRevLett.133.070401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum circuits utilizing measurement to evolve a quantum wave function offer a new and rich playground to engineer unconventional entanglement dynamics. Here, we introduce a hybrid, nonreciprocal setup featuring a quantum circuit, whose updates are conditioned on the state of a classical dynamical agent. In our example the circuit is represented by a Majorana quantum chain controlled by a classical N- state Potts chain undergoing pair flips. The local orientation of the classical spins controls whether randomly drawn local measurements on the quantum chain are allowed or not. This imposes a dynamical kinetic constraint on the entanglement growth, described by the transfer matrix of an N- colored loop model. It yields an equivalent description of the circuit by an SU ( N )-symmetric Temperley-Lieb Hamiltonian or by a kinetically constrained surface growth model for an N- component height field. For N = 2 , we find a diffusive growth of the half-chain entanglement toward a stationary profile S(L) ( L ) L 1 = 2 for L sites. For N >= 3 , the kinetic constraints impose Hilbert space fragmentation, yielding subdiffusive growth toward S(L) ( L ) L 0 . 57 . This showcases how the control by a classical dynamical agent can enrich the entanglement dynamics in quantum circuits, paving a route toward novel entanglement dynamics in nonreciprocal hybrid circuit architectures.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A study of a class of power-law tail quantum wave packets
    Lillo, F
    Mantegna, RN
    NUCLEAR AND CONDENSED MATTER PHYSICS, 2000, 513 : 134 - 137
  • [42] Enhanced power-law singularity by light field in quantum wires
    Inoue, JI
    Shimizu, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (28-30): : 3805 - 3808
  • [43] Quantum phase transitions and thermodynamics of the power-law Kondo model
    Mitchell, Andrew K.
    Vojta, Matthias
    Bulla, Ralf
    Fritz, Lars
    PHYSICAL REVIEW B, 2013, 88 (19):
  • [44] Preinflationary Dynamics of Power-Law Potential in Loop Quantum Cosmology
    Shahalam, M.
    UNIVERSE, 2018, 4 (08):
  • [45] POWER-LAW BLINKING QUANTUM DOTS: STOCHASTIC AND PHYSICAL MODELS
    Margolin, Gennady
    Protasenko, Vladimir
    Kuno, Masaru
    Barkai, Eli
    FRACTALS, DIFFUSION, AND RELAXATION IN DISORDERED COMPLEX SYSTEMS, PART A, 2006, 133 : 327 - 356
  • [46] Preinflationary dynamics in loop quantum cosmology: Power-law potentials
    Shahalam, M.
    Sharma, Manabendra
    Wu, Qiang
    Wang, Anzhong
    PHYSICAL REVIEW D, 2017, 96 (12)
  • [47] Quantum spherical spin glass with inverse power-law disorder
    Menezes, Pedro Castro
    Theumann, Alba
    PHYSICAL REVIEW B, 2009, 79 (09):
  • [48] Power-law photoluminescence decay in indirect gap quantum dots
    Mensik, M.
    Kral, K.
    MICROELECTRONIC ENGINEERING, 2013, 111 : 170 - 174
  • [49] SPECTRAL GEOMETRY OF POWER-LAW POTENTIALS IN QUANTUM-MECHANICS
    HALL, RL
    PHYSICAL REVIEW A, 1989, 39 (11): : 5500 - 5507
  • [50] Nonsingular power-law and assisted inflation in loop quantum cosmology
    Ranken, Evan
    Singh, Parampreet
    PHYSICAL REVIEW D, 2012, 85 (10):