Power-Law Entanglement and Hilbert Space Fragmentation in Nonreciprocal Quantum Circuits

被引:1
|
作者
Klocke, K. [1 ]
Moore, J. E. [1 ,2 ]
Buchhold, M. [3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
关键词
CROSSOVER SCALING FUNCTIONS; CONSERVATION-LAWS; MODEL; DEPOSITION; EVAPORATION; CHAIN;
D O I
10.1103/PhysRevLett.133.070401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum circuits utilizing measurement to evolve a quantum wave function offer a new and rich playground to engineer unconventional entanglement dynamics. Here, we introduce a hybrid, nonreciprocal setup featuring a quantum circuit, whose updates are conditioned on the state of a classical dynamical agent. In our example the circuit is represented by a Majorana quantum chain controlled by a classical N- state Potts chain undergoing pair flips. The local orientation of the classical spins controls whether randomly drawn local measurements on the quantum chain are allowed or not. This imposes a dynamical kinetic constraint on the entanglement growth, described by the transfer matrix of an N- colored loop model. It yields an equivalent description of the circuit by an SU ( N )-symmetric Temperley-Lieb Hamiltonian or by a kinetically constrained surface growth model for an N- component height field. For N = 2 , we find a diffusive growth of the half-chain entanglement toward a stationary profile S(L) ( L ) L 1 = 2 for L sites. For N >= 3 , the kinetic constraints impose Hilbert space fragmentation, yielding subdiffusive growth toward S(L) ( L ) L 0 . 57 . This showcases how the control by a classical dynamical agent can enrich the entanglement dynamics in quantum circuits, paving a route toward novel entanglement dynamics in nonreciprocal hybrid circuit architectures.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Electron Power-Law Spectra in Solar and Space Plasmas
    Oka, M.
    Birn, J.
    Battaglia, M.
    Chaston, C. C.
    Hatch, S. M.
    Livadiotis, G.
    Imada, S.
    Miyoshi, Y.
    Kuhar, M.
    Effenberger, F.
    Eriksson, E.
    Khotyaintsev, Y. V.
    Retino, A.
    SPACE SCIENCE REVIEWS, 2018, 214 (05)
  • [32] Quantum Szilard engine for the fractional power-law potentials
    Ekrem Aydiner
    Scientific Reports, 11
  • [33] Quantum Szilard engine for the fractional power-law potentials
    Aydiner, Ekrem
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [34] Coulomb plus power-law potentials in quantum mechanics
    Ciftci, H
    Hall, RL
    Katatbeh, QD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (25): : 7001 - 7007
  • [35] Anomalous spreading of power-law quantum wave packets
    Lillo, F
    Mantegna, RN
    PHYSICAL REVIEW LETTERS, 2000, 84 (06) : 1061 - 1065
  • [36] Quantum healing of classical singularities in power-law spacetimes
    Helliwell, T. M.
    Konkowski, D. A.
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (13) : 3377 - 3390
  • [37] Locality and Digital Quantum Simulation of Power-Law Interactions
    Tran, Minh C.
    Guo, Andrew Y.
    Su, Yuan
    Garrison, James R.
    Eldredge, Zachary
    Foss-Feig, Michael
    Childs, Andrew M.
    Gorshkov, Alexey V.
    PHYSICAL REVIEW X, 2019, 9 (03):
  • [38] Operator space entangling power of quantum dynamics and local operator entanglement growth in dual-unitary circuits
    Andreadakis, Faidon
    Dallas, Emanuel
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2024, 110 (05)
  • [39] Enhanced power-law singularity by light field in quantum wires
    Inoue, JI
    Shimizu, A
    PROCEEDINGS OF THE 2000 INTERNATIONAL CONFERENCE ON EXCITONIC PROCESSES IN CONDENSED MATTER, 2001, : 237 - 240
  • [40] Strong Hilbert space fragmentation via emergent quantum drums in two dimensions
    Chattopadhyay, Anwesha
    Mukherjee, Bhaskar
    Sengupta, Krishnendu
    Sen, Arnab
    SCIPOST PHYSICS, 2023, 14 (06):