. Power-law quantum distributions in protoneutron stars

被引:5
|
作者
Gervino, G. [1 ,3 ]
Lavagno, A. [2 ,3 ]
Pigato, D. [2 ,3 ]
机构
[1] Univ Turin, Dept Phys, I-10126 Turin, Italy
[2] Politecnico Torino, Dept Appl Sci & Technol, I-10129 Turin, Italy
[3] Sezione Torino, Ist Nazl Fis Nucl, I-10126 Turin, Italy
关键词
REACTION-RATES; NEUTRON-STAR; FLUCTUATIONS; QUARK;
D O I
10.1088/1742-6596/442/1/012065
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the bulk properties of protoneutron stars in the framework of a relativistic mean field theory based on nonextensive statistical mechanics, originally proposed by C. Tsallis and characterized by power-law quantum distributions. We study the relevance of nonextensive statistical effects on the beta-stable equation of state at fixed entropy per baryon, for nucleonic and hyperonic matter. We concentrate our analysis in the maximum heating and entropy per baryon s = 2 stage and T approximate to 40 divided by 80 MeV. This is the phase, at high temperature and high baryon density, in which the presence of nonextensive effects may alter more sensibly the thermodynamical and mechanical properties of the protoneutron star. We show that nonextensive power-law effects could play a crucial role in the structure and in the evolution of the protoneutron stars also for small deviations from the standard Boltzmann-Gibbs statistics.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Power-law distributions in protoneutron stars
    Gervino, G.
    Lavagno, A.
    Pigato, D.
    [J]. NUCLEAR PHYSICS IN ASTROPHYSICS VI (NPA6), 2016, 665
  • [2] SAMPLING POWER-LAW DISTRIBUTIONS
    PICKERING, G
    BULL, JM
    SANDERSON, DJ
    [J]. TECTONOPHYSICS, 1995, 248 (1-2) : 1 - 20
  • [3] Power-law stellar distributions
    Lima, JAS
    de Souza, RE
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 350 (2-4) : 303 - 314
  • [4] Power-law tail distributions and nonergodicity
    Lutz, E
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (19) : 190602 - 1
  • [5] Power-Law Distributions in Empirical Data
    Clauset, Aaron
    Shalizi, Cosma Rohilla
    Newman, M. E. J.
    [J]. SIAM REVIEW, 2009, 51 (04) : 661 - 703
  • [6] Universal Compression of Power-Law Distributions
    Falahatgar, Moein
    Jafarpour, Ashkan
    Orlitsky, Alon
    Pichapati, Venkatadheeraj
    Suresh, Ananda Theertha
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2001 - 2005
  • [7] Discrete Truncated Power-Law Distributions
    Zhu, Hong
    Xie, Yingchao
    Xu, Maochao
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2016, 58 (02) : 197 - 209
  • [8] Gibbsian theory of power-law distributions
    Treumann, R. A.
    Jaroschek, C. H.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (15)
  • [9] On Possible Origins of Power-law Distributions
    Wilk, Grzegorz
    Wlodarczyk, Zbigniew
    [J]. 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 893 - 896
  • [10] Modeling of flows with power-law spectral densities and power-law distributions of flow intensities
    Kaulakys, Bronislovas
    Alaburda, Miglius
    Gontis, Vygintas
    Meskauskas, Tadas
    Ruseckas, Julius
    [J]. TRAFFIC AND GRANULAR FLOW ' 05, 2007, : 603 - +