1-Octanol-assisted ultra-small volume droplet microfluidics with nanoelectrospray ionization mass spectrometry

被引:1
|
作者
Zhao, Yaoyao [1 ,2 ,7 ]
Park, Insu [3 ]
Rubakhin, Stanislav S. [1 ,2 ]
Bashir, Rashid [4 ,5 ,6 ]
Vlasov, Yurii [4 ,5 ,6 ]
Sweedler, Jonathan V. [1 ,2 ,6 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Univ Illinois, Holonyak Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Holonyak Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[7] Beijing Univ Technol, Dept Chem, Beijing 100124, Peoples R China
基金
美国国家卫生研究院;
关键词
Cerebral spinal fluid; Neurotransmitters; Low volume sampling; Droplet microfluidics; Mass spectrometry; CEREBROSPINAL-FLUID; PICOLITER DROPLETS; NANOLITER-SCALE; SEGMENTED FLOW; PLATFORM; ACETYLCHOLINE; CAPILLARY; ARRAY;
D O I
10.1016/j.aca.2024.342998
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Background: Droplet microfluidics with push-pull and microdialysis sampling from brain slices, cultured cells and engineered tissues produce low volume mass limited samples containing analytes sampled from the extracellular space. This sampling approach coupled to mass spectrometry (MS) detection allows evaluation of time- dependent chemical changes. Our goal is an approach for continuous sampling and segregation of extracellular samples into picoliter droplets followed by the characterization of the droplets using nanoelectrospray ionization (nESI) MS. The main focus here is the optimization of the carrier oil for the microfluidic device that neither affects the stability of picoliter droplets nor compatibility with MS detection of a range of analytes. Results: We developed and characterized a 1-octanol-assisted ultra-small volume droplet microfluidic nESI MS system for the analysis of neurotransmitters in distinct samples including cerebrospinal fluid (CSF). The use of a 1-octanol oil phase was effective for generation of aqueous droplets as small as 65 pL and enabled detection of acetylcholine (ACh) and gamma-aminobutyric acid (GABA) in water and artificial CSF. Continuous MS analysis of droplets for extended periods up to 220 min validated the long-term stability of droplet generation and analyte detection by nESI-MS. As an example, ACh response demonstrated a linear working range (R2 2 = 0.99) between 0.4 mu M and 25 mu M with a limit of detection of 370 nM (24 amol), enabling its quantitation in rodent CSF. Significance: The established droplet microfluidics - nESI MS approach allows the analysis of microenvironments at high spatiotemporal resolution. The approach may allow microsampling and monitoring of spatiotemporal dynamics of neurochemicals and drugs in the brain and spinal cord of live animals.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Small-molecule analysis by surface-assisted laser desorption/ionization mass spectrometry
    Kuzema, P. A.
    JOURNAL OF ANALYTICAL CHEMISTRY, 2011, 66 (13) : 1227 - 1242
  • [22] Small-molecule analysis by surface-assisted laser desorption/ionization mass spectrometry
    P. A. Kuzema
    Journal of Analytical Chemistry, 2011, 66 : 1227 - 1242
  • [23] Derivatization of small biomolecules for optimized matrix-assisted laser desorption/ionization mass spectrometry
    Tholey, A
    Wittmann, C
    Kang, MJ
    Bungert, D
    Hollemeyer, K
    Heinzle, E
    JOURNAL OF MASS SPECTROMETRY, 2002, 37 (09): : 963 - 973
  • [24] Characterization of phosphopeptides from protein digests using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray quadrupole time-of-flight mass spectrometry
    Ma, YL
    Lu, Y
    Zeng, HQ
    Ron, D
    Mo, WJ
    Neubert, TA
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2001, 15 (18) : 1693 - 1700
  • [25] On-chip sample preparation by electrowetting-on-dielectric digital microfluidics for matrix assisted laser desorption/ionization mass spectrometry
    Moon, HJ
    Wheeler, AR
    Garrell, RL
    Loo, JA
    Kim, CJC
    MEMS 2005 Miami: Technical Digest, 2005, : 859 - 862
  • [26] Analysis of small molecules by ultra thin-layer chromatography-atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry
    Salo, PK
    Salomies, H
    Harju, K
    Ketola, RA
    Kotiaho, T
    Yli-Kauhaluoma, J
    Kostiainen, R
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2005, 16 (06) : 906 - 915
  • [27] Analyte migration electrospray ionization for rapid analysis of complex samples with small volume using mass spectrometry
    Wang, Qian
    Zhong, Hanbin
    Zheng, Yajun
    Zhang, Sichun
    Liu, Xiaoning
    Zhang, Xinrong
    Zhang, Xiaoling
    Zhang, Zhiping
    ANALYST, 2014, 139 (22) : 5678 - 5681
  • [28] Monolithic 3D nanoelectrospray emitters based on a continuous fluid-assisted etching strategy for glass droplet microfluidic chip-mass spectrometry
    Guo, Ziyang
    Zhao, Yingqi
    Jin, Zhao
    Chang, Yaran
    Wang, Xiayan
    Guo, Guangsheng
    Zhao, Yaoyao
    CHEMICAL SCIENCE, 2024, 15 (20) : 7781 - 7788
  • [29] ULTRA-SMALL GRAPHITIZATION REACTORS FOR ULTRA-MICROSCALE 14C ANALYSIS AT THE NATIONAL OCEAN SCIENCES ACCELERATOR MASS SPECTROMETRY (NOSAMS) FACILITY
    Walter, Sunita R. Shah
    Gagnon, Alan R.
    Roberts, Mark L.
    McNichol, Ann P.
    Gaylord, Mary C. Lardie
    Klein, Elizabeth
    RADIOCARBON, 2015, 57 (01) : 109 - 122
  • [30] Identification of Inhibitors of the Antibiotic-Resistance Target New Delhi Metallo-β-lactamase 1 by both Nanoelectrospray Ionization Mass Spectrometry and Ultrafiltration Liquid Chromatography/Mass Spectrometry Approaches
    Chen, Xin
    Li, Lixin
    Chen, Shuai
    Xu, Yintong
    Xia, Qiang
    Guo, Yu
    Liu, Xiang
    Tang, Yanting
    Zhang, Tanjie
    Chen, Yue
    Yang, Cheng
    Shui, Wenqing
    ANALYTICAL CHEMISTRY, 2013, 85 (16) : 7957 - 7965