Flexible Organic Electrochemical Transistors for Energy-Efficient Neuromorphic Computing

被引:0
|
作者
Zhu, Li [1 ]
Lin, Junchen [1 ]
Zhu, Yixin [2 ]
Wu, Jie [1 ]
Wan, Xiang [1 ]
Sun, Huabin [1 ,3 ]
Yu, Zhihao [1 ,3 ]
Xu, Yong [1 ,3 ]
Tan, Cheeleong [1 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Integrated Circuit Sci & Engn, Nanjing 210023, Peoples R China
[2] Yongjiang Lab Y LAB, Ningbo 315202, Peoples R China
[3] Guangdong Greater Bay Area Inst Integrated Circuit, Guangzhou 510535, Peoples R China
基金
中国国家自然科学基金;
关键词
flexible organic transistor; low-power; artificial synapse; short-term and long-term plasticity; neuromorphic computing; SYNAPTIC TRANSISTORS; MEMRISTOR; DEVICES; MEMORY; LAYER;
D O I
10.3390/nano14141195
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Brain-inspired flexible neuromorphic devices are of great significance for next-generation high-efficiency wearable sensing and computing systems. In this paper, we propose a flexible organic electrochemical transistor using poly[(bithiophene)-alternate-(2,5-di(2-octyldodecyl)- 3,6-di(thienyl)-pyrrolyl pyrrolidone)] (DPPT-TT) as the organic semiconductor and poly(methyl methacrylate) (PMMA)/LiClO4 solid-state electrolyte as the gate dielectric layer. Under gate voltage modulation, an electric double layer (EDL) forms between the dielectric layer and the channel, allowing the device to operate at low voltages. Furthermore, by leveraging the double layer effect and electrochemical doping within the device, we successfully mimic various synaptic behaviors, including excitatory post-synaptic currents (EPSC), paired-pulse facilitation (PPF), high-pass filtering characteristics, transitions from short-term plasticity (STP) to long-term plasticity (LTP), and demonstrate its image recognition and storage capabilities in a 3 x 3 array. Importantly, the device's electrical performance remains stable even after bending, achieving ultra-low-power consumption of 2.08 fJ per synaptic event at -0.001 V. This research may contribute to the development of ultra-low-power neuromorphic computing, biomimetic robotics, and artificial intelligence.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Organic Optoelectronic Synaptic Devices for Energy-Efficient Neuromorphic Computing
    Li, Qingxuan
    Wang, Tianyu
    Hu, Xuemeng
    Wu, Xiaohan
    Zhu, Hao
    Ji, Li
    Sun, Qingqing
    Zhang, David Wei
    Chen, Lin
    [J]. IEEE ELECTRON DEVICE LETTERS, 2022, 43 (07) : 1089 - 1092
  • [2] Backpropagation for Energy-Efficient Neuromorphic Computing
    Esser, Steve K.
    Appuswamy, Rathinakumar
    Merolla, Paul A.
    Arthur, John V.
    Modha, Dharmendra S.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [3] Energy-Efficient Organic Ferroelectric Tunnel Junction Memristors for Neuromorphic Computing
    Majumdar, Sayani
    Tan, Hongwei
    Qin, Qi Hang
    van Dijken, Sebastiaan
    [J]. ADVANCED ELECTRONIC MATERIALS, 2019, 5 (03):
  • [4] Energy-efficient memcapacitor devices for neuromorphic computing
    Demasius, Kai-Uwe
    Kirschen, Aron
    Parkin, Stuart
    [J]. NATURE ELECTRONICS, 2021, 4 (10) : 748 - 756
  • [5] Silicon photonics for energy-efficient neuromorphic computing
    Tossoun, Bassem
    [J]. EMERGING APPLICATIONS IN SILICON PHOTONICS III, 2022, 12334
  • [6] Energy-efficient memcapacitor devices for neuromorphic computing
    Kai-Uwe Demasius
    Aron Kirschen
    Stuart Parkin
    [J]. Nature Electronics, 2021, 4 : 748 - 756
  • [7] Neuromorphic Computing for Energy-Efficient Edge Intelligence
    Panda, Priya
    [J]. 2024 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI TSA, 2024,
  • [8] An Energy-Efficient Solid-State Organic Device Array for Neuromorphic Computing
    Hu, Lan Shen
    Fattori, Marco
    Schilp, Winston
    Verbeek, Roy
    Kazemzadeh, Setareh
    van de Burgt, Yoeri
    Kronemeijer, Auke Jisk
    Gelinck, Gerwin
    Cantatore, Eugenio
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (12) : 6520 - 6525
  • [9] Organic High-Temperature Synaptic Phototransistors for Energy-Efficient Neuromorphic Computing
    Guo, Ziyi
    Zhang, Junyao
    Yang, Ben
    Li, Li
    Liu, Xu
    Xu, Yutong
    Wu, Yue
    Guo, Pu
    Sun, Tongrui
    Dai, Shilei
    Liang, Haixia
    Wang, Jun
    Zou, Yidong
    Xiong, Lize
    Huang, Jia
    [J]. ADVANCED MATERIALS, 2024, 36 (13)
  • [10] Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing
    Dmitry Kireev
    Samuel Liu
    Harrison Jin
    T. Patrick Xiao
    Christopher H. Bennett
    Deji Akinwande
    Jean Anne C. Incorvia
    [J]. Nature Communications, 13