Flexible Organic Electrochemical Transistors for Energy-Efficient Neuromorphic Computing

被引:0
|
作者
Zhu, Li [1 ]
Lin, Junchen [1 ]
Zhu, Yixin [2 ]
Wu, Jie [1 ]
Wan, Xiang [1 ]
Sun, Huabin [1 ,3 ]
Yu, Zhihao [1 ,3 ]
Xu, Yong [1 ,3 ]
Tan, Cheeleong [1 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Integrated Circuit Sci & Engn, Nanjing 210023, Peoples R China
[2] Yongjiang Lab Y LAB, Ningbo 315202, Peoples R China
[3] Guangdong Greater Bay Area Inst Integrated Circuit, Guangzhou 510535, Peoples R China
基金
中国国家自然科学基金;
关键词
flexible organic transistor; low-power; artificial synapse; short-term and long-term plasticity; neuromorphic computing; SYNAPTIC TRANSISTORS; MEMRISTOR; DEVICES; MEMORY; LAYER;
D O I
10.3390/nano14141195
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Brain-inspired flexible neuromorphic devices are of great significance for next-generation high-efficiency wearable sensing and computing systems. In this paper, we propose a flexible organic electrochemical transistor using poly[(bithiophene)-alternate-(2,5-di(2-octyldodecyl)- 3,6-di(thienyl)-pyrrolyl pyrrolidone)] (DPPT-TT) as the organic semiconductor and poly(methyl methacrylate) (PMMA)/LiClO4 solid-state electrolyte as the gate dielectric layer. Under gate voltage modulation, an electric double layer (EDL) forms between the dielectric layer and the channel, allowing the device to operate at low voltages. Furthermore, by leveraging the double layer effect and electrochemical doping within the device, we successfully mimic various synaptic behaviors, including excitatory post-synaptic currents (EPSC), paired-pulse facilitation (PPF), high-pass filtering characteristics, transitions from short-term plasticity (STP) to long-term plasticity (LTP), and demonstrate its image recognition and storage capabilities in a 3 x 3 array. Importantly, the device's electrical performance remains stable even after bending, achieving ultra-low-power consumption of 2.08 fJ per synaptic event at -0.001 V. This research may contribute to the development of ultra-low-power neuromorphic computing, biomimetic robotics, and artificial intelligence.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Toward Energy-Efficient Computing
    Brown, David J.
    Reams, Charles
    [J]. COMMUNICATIONS OF THE ACM, 2010, 53 (03) : 50 - 58
  • [42] Energy-efficient quantum computing
    Joni Ikonen
    Juha Salmilehto
    Mikko Möttönen
    [J]. npj Quantum Information, 3
  • [43] Flexible Printed Ultraviolet-to-Near-Infrared Broadband Optoelectronic Carbon Nanotube Synaptic Transistors for Fast and Energy-Efficient Neuromorphic Vision Systems
    Li, Zebin
    Li, Min
    Zhu, Tianxiang
    Li, Benxiang
    Wang, Zebin
    Shao, Shuangshuang
    Deng, Zhenyan
    Zhao, Xinluo
    Liu, Cheng
    Zhao, Jianwen
    [J]. SMALL METHODS, 2024,
  • [44] Design of Many-Core Big Little μBrains for Energy-Efficient Embedded Neuromorphic Computing
    Varshika, M. Lakshmi
    Balaji, Marsha
    Corradi, Federico
    Das, Anup
    Stuijt, Jan
    Catthoor, Francky
    [J]. PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 1011 - 1016
  • [45] A FeFET with a novel MFMFIS gate stack: towards energy-efficient and ultrafast NVMs for neuromorphic computing
    Ali, Tarek
    Mertens, Konstantin
    Kuehnel, Kati
    Rudolph, Matthias
    Oehler, Sebastian
    Lehninger, David
    Mueller, Franz
    Revello, Ricardo
    Hoffmann, Raik
    Zimmermann, Katrin
    Kaempfe, Thomas
    Czernohorsky, Malte
    Seidel, Konrad
    Van Houdt, Jan
    Eng, Lukas M.
    [J]. NANOTECHNOLOGY, 2021, 32 (42)
  • [46] Materials aspects of PEDOT:PSS for neuromorphic organic electrochemical transistors
    Yamamoto, Shunsuke
    [J]. FLEXIBLE AND PRINTED ELECTRONICS, 2024, 9 (01):
  • [47] Redox transistors for neuromorphic computing
    Fuller, E. J.
    Li, Y.
    Bennet, C.
    Keene, S. T.
    Melianas, A.
    Agarwal, S.
    Marinella, M. J.
    Salleo, A.
    Talin, A. A.
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2019, 63 (06)
  • [48] Highly biomimetic spiking neuron using SiGe heterojunction bipolar transistors for energy-efficient neuromorphic systems
    Kim, Yijoon
    Kim, Hyangwoo
    Oh, Kyounghwan
    Park, Ju Hong
    Baek, Chang-Ki
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [49] Artificial neuromodulator-synapse mimicked by a three-terminal vertical organic ferroelectric barristor for fast and energy-efficient neuromorphic computing
    Ham, Seonggil
    Jang, Jingon
    Koo, Dohyong
    Gi, Sanggyun
    Kim, Dowon
    Jang, Seonghoon
    Kim, Nam Dong
    Bae, Sukang
    Lee, Byunggeun
    Lee, Chul-Ho
    Wang, Gunuk
    [J]. NANO ENERGY, 2024, 124
  • [50] SENeCA: Scalable Energy-efficient Neuromorphic Computer Architecture
    Yousefzadeh, Amirreza
    Van Schaik, Gert-Jan
    Tahghighi, Mohammad
    Detterer, Paul
    Traferro, Stefano
    Hijdra, Martijn
    Stuijt, Jan
    Corradi, Federico
    Sifalakis, Manolis
    Konijnenburg, Mario
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, : 371 - 374