Energy-Efficient Organic Ferroelectric Tunnel Junction Memristors for Neuromorphic Computing

被引:163
|
作者
Majumdar, Sayani [1 ]
Tan, Hongwei [1 ]
Qin, Qi Hang [1 ,2 ]
van Dijken, Sebastiaan [1 ]
机构
[1] Aalto Univ, Sch Sci, Nanospin, Dept Appl Phys, POB 15100, FI-00076 Aalto, Finland
[2] Ajat Oy Ltd, Tekniikantie 4 B, Espoo 02150, Finland
来源
ADVANCED ELECTRONIC MATERIALS | 2019年 / 5卷 / 03期
基金
芬兰科学院;
关键词
electronic synapses; energy-efficient memory; ferroelectric tunnel junctions; neuromorphic computing; organic ferroelectric copolymers; NEURAL-NETWORKS; PLASTICITY; DEVICE; MEMORY; ELECTRORESISTANCE; SYNAPSE;
D O I
10.1002/aelm.201800795
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Energy efficiency, parallel information processing, and unsupervised learning make the human brain a model computing system for unstructured data handling. Different types of oxide memristors can emulate synaptic functions in artificial neuromorphic circuits. However, their cycle-to-cycle variability or strict epitaxy requirements remain a challenge for applications in large-scale neural networks. Here, solution-processable ferroelectric tunnel junctions (FTJs) with P(VDF-TrFE) copolymer barriers are reported showing analog memristive behavior with a broad range of accessible conductance states and low energy dissipation of 100 fJ for the onset of depression and 1 pJ for the onset of potentiation by resetting small tunneling currents on nanosecond timescales. Key synaptic functions like programmable synaptic weight, long- and short-term potentiation and depression, paired-pulse facilitation and depression, and Hebbian and anti-Hebbian learning through spike shape and timing-dependent plasticity are demonstrated. In combination with good switching endurance and reproducibility, these results offer a promising outlook on the use of organic FTJ memristors as building blocks in artificial neural networks.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Symmetric and Energy-Efficient Conductance Update in Ferroelectric Tunnel Junction for Neural Network Computing
    Guan, Zeyu
    Wang, Zijian
    Shen, Shengchun
    Yin, Yuewei
    Li, Xiaoguang
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [2] Ferroelectric Tunnel Junction Memristors for In-Memory Computing Accelerators
    Athle, Robin
    Borg, Mattias
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2024, 6 (03)
  • [3] Energy-efficient and noise-tolerant neuromorphic computing based on memristors and domino logic
    Hendy, Hagar
    Merkel, Cory
    [J]. FRONTIERS IN NANOTECHNOLOGY, 2023, 5
  • [4] Organic Optoelectronic Synaptic Devices for Energy-Efficient Neuromorphic Computing
    Li, Qingxuan
    Wang, Tianyu
    Hu, Xuemeng
    Wu, Xiaohan
    Zhu, Hao
    Ji, Li
    Sun, Qingqing
    Zhang, David Wei
    Chen, Lin
    [J]. IEEE ELECTRON DEVICE LETTERS, 2022, 43 (07) : 1089 - 1092
  • [5] Flexible Organic Electrochemical Transistors for Energy-Efficient Neuromorphic Computing
    Zhu, Li
    Lin, Junchen
    Zhu, Yixin
    Wu, Jie
    Wan, Xiang
    Sun, Huabin
    Yu, Zhihao
    Xu, Yong
    Tan, Cheeleong
    [J]. NANOMATERIALS, 2024, 14 (14)
  • [6] Backpropagation for Energy-Efficient Neuromorphic Computing
    Esser, Steve K.
    Appuswamy, Rathinakumar
    Merolla, Paul A.
    Arthur, John V.
    Modha, Dharmendra S.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [7] Memristors for Energy-Efficient New Computing Paradigms
    Jeong, Doo Seok
    Kim, Kyung Min
    Kim, Sungho
    Choi, Byung Joon
    Hwang, Cheol Seong
    [J]. ADVANCED ELECTRONIC MATERIALS, 2016, 2 (09):
  • [8] Organic and perovskite memristors for neuromorphic computing
    Park, Hea-Lim
    Lee, Tae-Woo
    [J]. ORGANIC ELECTRONICS, 2021, 98
  • [9] Energy-efficient memcapacitor devices for neuromorphic computing
    Demasius, Kai-Uwe
    Kirschen, Aron
    Parkin, Stuart
    [J]. NATURE ELECTRONICS, 2021, 4 (10) : 748 - 756
  • [10] Silicon photonics for energy-efficient neuromorphic computing
    Tossoun, Bassem
    [J]. EMERGING APPLICATIONS IN SILICON PHOTONICS III, 2022, 12334